Spaces:
Running
on
Zero
Running
on
Zero
from ..models import ModelManager, FluxDiT, FluxTextEncoder1, FluxTextEncoder2, FluxVAEDecoder, FluxVAEEncoder | |
from ..prompters import FluxPrompter | |
from ..schedulers import FlowMatchScheduler | |
from .base import BasePipeline | |
import torch | |
from tqdm import tqdm | |
class FluxImagePipeline(BasePipeline): | |
def __init__(self, device="cuda", torch_dtype=torch.float16): | |
super().__init__(device=device, torch_dtype=torch_dtype) | |
self.scheduler = FlowMatchScheduler() | |
self.prompter = FluxPrompter() | |
# models | |
self.text_encoder_1: FluxTextEncoder1 = None | |
self.text_encoder_2: FluxTextEncoder2 = None | |
self.dit: FluxDiT = None | |
self.vae_decoder: FluxVAEDecoder = None | |
self.vae_encoder: FluxVAEEncoder = None | |
def denoising_model(self): | |
return self.dit | |
def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]): | |
self.text_encoder_1 = model_manager.fetch_model("flux_text_encoder_1") | |
self.text_encoder_2 = model_manager.fetch_model("flux_text_encoder_2") | |
self.dit = model_manager.fetch_model("flux_dit") | |
self.vae_decoder = model_manager.fetch_model("flux_vae_decoder") | |
self.vae_encoder = model_manager.fetch_model("flux_vae_encoder") | |
self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2) | |
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) | |
def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[]): | |
pipe = FluxImagePipeline( | |
device=model_manager.device, | |
torch_dtype=model_manager.torch_dtype, | |
) | |
pipe.fetch_models(model_manager, prompt_refiner_classes) | |
return pipe | |
def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): | |
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
return latents | |
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): | |
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
image = self.vae_output_to_image(image) | |
return image | |
def encode_prompt(self, prompt, positive=True): | |
prompt_emb, pooled_prompt_emb, text_ids = self.prompter.encode_prompt( | |
prompt, device=self.device, positive=positive | |
) | |
return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb, "text_ids": text_ids} | |
def prepare_extra_input(self, latents=None, guidance=0.0): | |
latent_image_ids = self.dit.prepare_image_ids(latents) | |
guidance = torch.Tensor([guidance] * latents.shape[0]).to(device=latents.device, dtype=latents.dtype) | |
return {"image_ids": latent_image_ids, "guidance": guidance} | |
def __call__( | |
self, | |
prompt, | |
local_prompts=[], | |
masks=[], | |
mask_scales=[], | |
negative_prompt="", | |
cfg_scale=1.0, | |
embedded_guidance=0.0, | |
input_image=None, | |
denoising_strength=1.0, | |
height=1024, | |
width=1024, | |
num_inference_steps=30, | |
tiled=False, | |
tile_size=128, | |
tile_stride=64, | |
progress_bar_cmd=tqdm, | |
progress_bar_st=None, | |
): | |
# Tiler parameters | |
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} | |
# Prepare scheduler | |
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) | |
# Prepare latent tensors | |
if input_image is not None: | |
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) | |
latents = self.encode_image(image, **tiler_kwargs) | |
noise = torch.randn((1, 16, height//8, width//8), device=self.device, dtype=self.torch_dtype) | |
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) | |
else: | |
latents = torch.randn((1, 16, height//8, width//8), device=self.device, dtype=self.torch_dtype) | |
# Encode prompts | |
prompt_emb_posi = self.encode_prompt(prompt, positive=True) | |
if cfg_scale != 1.0: | |
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) | |
prompt_emb_locals = [self.encode_prompt(prompt_local) for prompt_local in local_prompts] | |
# Extra input | |
extra_input = self.prepare_extra_input(latents, guidance=embedded_guidance) | |
# Denoise | |
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
timestep = timestep.unsqueeze(0).to(self.device) | |
# Classifier-free guidance | |
inference_callback = lambda prompt_emb_posi: self.dit( | |
latents, timestep=timestep, **prompt_emb_posi, **tiler_kwargs, **extra_input | |
) | |
noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback) | |
if cfg_scale != 1.0: | |
noise_pred_nega = self.dit( | |
latents, timestep=timestep, **prompt_emb_nega, **tiler_kwargs, **extra_input | |
) | |
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
else: | |
noise_pred = noise_pred_posi | |
# Iterate | |
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) | |
# UI | |
if progress_bar_st is not None: | |
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) | |
# Decode image | |
image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
return image | |