wenmengzhou's picture
add code and adapt to zero gpus
703e263 verified
raw
history blame
11.9 kB
from ..models import SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDIpAdapter, IpAdapterCLIPImageEmbedder, SDMotionModel
from ..models.model_manager import ModelManager
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator
from ..prompters import SDPrompter
from ..schedulers import EnhancedDDIMScheduler
from .sd_image import SDImagePipeline
from .dancer import lets_dance
from typing import List
import torch
from tqdm import tqdm
def lets_dance_with_long_video(
unet: SDUNet,
motion_modules: SDMotionModel = None,
controlnet: MultiControlNetManager = None,
sample = None,
timestep = None,
encoder_hidden_states = None,
ipadapter_kwargs_list = {},
controlnet_frames = None,
unet_batch_size = 1,
controlnet_batch_size = 1,
cross_frame_attention = False,
tiled=False,
tile_size=64,
tile_stride=32,
device="cuda",
animatediff_batch_size=16,
animatediff_stride=8,
):
num_frames = sample.shape[0]
hidden_states_output = [(torch.zeros(sample[0].shape, dtype=sample[0].dtype), 0) for i in range(num_frames)]
for batch_id in range(0, num_frames, animatediff_stride):
batch_id_ = min(batch_id + animatediff_batch_size, num_frames)
# process this batch
hidden_states_batch = lets_dance(
unet, motion_modules, controlnet,
sample[batch_id: batch_id_].to(device),
timestep,
encoder_hidden_states,
ipadapter_kwargs_list=ipadapter_kwargs_list,
controlnet_frames=controlnet_frames[:, batch_id: batch_id_].to(device) if controlnet_frames is not None else None,
unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size,
cross_frame_attention=cross_frame_attention,
tiled=tiled, tile_size=tile_size, tile_stride=tile_stride, device=device
).cpu()
# update hidden_states
for i, hidden_states_updated in zip(range(batch_id, batch_id_), hidden_states_batch):
bias = max(1 - abs(i - (batch_id + batch_id_ - 1) / 2) / ((batch_id_ - batch_id - 1 + 1e-2) / 2), 1e-2)
hidden_states, num = hidden_states_output[i]
hidden_states = hidden_states * (num / (num + bias)) + hidden_states_updated * (bias / (num + bias))
hidden_states_output[i] = (hidden_states, num + bias)
if batch_id_ == num_frames:
break
# output
hidden_states = torch.stack([h for h, _ in hidden_states_output])
return hidden_states
class SDVideoPipeline(SDImagePipeline):
def __init__(self, device="cuda", torch_dtype=torch.float16, use_original_animatediff=True):
super().__init__(device=device, torch_dtype=torch_dtype)
self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_original_animatediff else "scaled_linear")
self.prompter = SDPrompter()
# models
self.text_encoder: SDTextEncoder = None
self.unet: SDUNet = None
self.vae_decoder: SDVAEDecoder = None
self.vae_encoder: SDVAEEncoder = None
self.controlnet: MultiControlNetManager = None
self.ipadapter_image_encoder: IpAdapterCLIPImageEmbedder = None
self.ipadapter: SDIpAdapter = None
self.motion_modules: SDMotionModel = None
def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]):
# Main models
self.text_encoder = model_manager.fetch_model("sd_text_encoder")
self.unet = model_manager.fetch_model("sd_unet")
self.vae_decoder = model_manager.fetch_model("sd_vae_decoder")
self.vae_encoder = model_manager.fetch_model("sd_vae_encoder")
self.prompter.fetch_models(self.text_encoder)
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes)
# ControlNets
controlnet_units = []
for config in controlnet_config_units:
controlnet_unit = ControlNetUnit(
Annotator(config.processor_id, device=self.device),
model_manager.fetch_model("sd_controlnet", config.model_path),
config.scale
)
controlnet_units.append(controlnet_unit)
self.controlnet = MultiControlNetManager(controlnet_units)
# IP-Adapters
self.ipadapter = model_manager.fetch_model("sd_ipadapter")
self.ipadapter_image_encoder = model_manager.fetch_model("sd_ipadapter_clip_image_encoder")
# Motion Modules
self.motion_modules = model_manager.fetch_model("sd_motion_modules")
if self.motion_modules is None:
self.scheduler = EnhancedDDIMScheduler(beta_schedule="scaled_linear")
@staticmethod
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]):
pipe = SDVideoPipeline(
device=model_manager.device,
torch_dtype=model_manager.torch_dtype,
)
pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes)
return pipe
def decode_video(self, latents, tiled=False, tile_size=64, tile_stride=32):
images = [
self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
for frame_id in range(latents.shape[0])
]
return images
def encode_video(self, processed_images, tiled=False, tile_size=64, tile_stride=32):
latents = []
for image in processed_images:
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)
latent = self.encode_image(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
latents.append(latent.cpu())
latents = torch.concat(latents, dim=0)
return latents
@torch.no_grad()
def __call__(
self,
prompt,
negative_prompt="",
cfg_scale=7.5,
clip_skip=1,
num_frames=None,
input_frames=None,
ipadapter_images=None,
ipadapter_scale=1.0,
controlnet_frames=None,
denoising_strength=1.0,
height=512,
width=512,
num_inference_steps=20,
animatediff_batch_size = 16,
animatediff_stride = 8,
unet_batch_size = 1,
controlnet_batch_size = 1,
cross_frame_attention = False,
smoother=None,
smoother_progress_ids=[],
tiled=False,
tile_size=64,
tile_stride=32,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
# Tiler parameters, batch size ...
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
other_kwargs = {
"animatediff_batch_size": animatediff_batch_size, "animatediff_stride": animatediff_stride,
"unet_batch_size": unet_batch_size, "controlnet_batch_size": controlnet_batch_size,
"cross_frame_attention": cross_frame_attention,
}
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
if self.motion_modules is None:
noise = torch.randn((1, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1)
else:
noise = torch.randn((num_frames, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype)
if input_frames is None or denoising_strength == 1.0:
latents = noise
else:
latents = self.encode_video(input_frames, **tiler_kwargs)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
# Encode prompts
prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, positive=True)
prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, positive=False)
# IP-Adapter
if ipadapter_images is not None:
ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images)
ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)}
ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))}
else:
ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}}
# Prepare ControlNets
if controlnet_frames is not None:
if isinstance(controlnet_frames[0], list):
controlnet_frames_ = []
for processor_id in range(len(controlnet_frames)):
controlnet_frames_.append(
torch.stack([
self.controlnet.process_image(controlnet_frame, processor_id=processor_id).to(self.torch_dtype)
for controlnet_frame in progress_bar_cmd(controlnet_frames[processor_id])
], dim=1)
)
controlnet_frames = torch.concat(controlnet_frames_, dim=0)
else:
controlnet_frames = torch.stack([
self.controlnet.process_image(controlnet_frame).to(self.torch_dtype)
for controlnet_frame in progress_bar_cmd(controlnet_frames)
], dim=1)
controlnet_kwargs = {"controlnet_frames": controlnet_frames}
else:
controlnet_kwargs = {"controlnet_frames": None}
# Denoise
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = timestep.unsqueeze(0).to(self.device)
# Classifier-free guidance
noise_pred_posi = lets_dance_with_long_video(
self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet,
sample=latents, timestep=timestep,
**prompt_emb_posi, **controlnet_kwargs, **ipadapter_kwargs_list_posi, **other_kwargs, **tiler_kwargs,
device=self.device,
)
noise_pred_nega = lets_dance_with_long_video(
self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet,
sample=latents, timestep=timestep,
**prompt_emb_nega, **controlnet_kwargs, **ipadapter_kwargs_list_nega, **other_kwargs, **tiler_kwargs,
device=self.device,
)
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
# DDIM and smoother
if smoother is not None and progress_id in smoother_progress_ids:
rendered_frames = self.scheduler.step(noise_pred, timestep, latents, to_final=True)
rendered_frames = self.decode_video(rendered_frames)
rendered_frames = smoother(rendered_frames, original_frames=input_frames)
target_latents = self.encode_video(rendered_frames)
noise_pred = self.scheduler.return_to_timestep(timestep, latents, target_latents)
latents = self.scheduler.step(noise_pred, timestep, latents)
# UI
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
output_frames = self.decode_video(latents, **tiler_kwargs)
# Post-process
if smoother is not None and (num_inference_steps in smoother_progress_ids or -1 in smoother_progress_ids):
output_frames = smoother(output_frames, original_frames=input_frames)
return output_frames