Spaces:
Running
on
Zero
Running
on
Zero
import torch, os | |
from torchvision import transforms | |
import pandas as pd | |
from PIL import Image | |
class TextImageDataset(torch.utils.data.Dataset): | |
def __init__(self, dataset_path, steps_per_epoch=10000, height=1024, width=1024, center_crop=True, random_flip=False): | |
self.steps_per_epoch = steps_per_epoch | |
metadata = pd.read_csv(os.path.join(dataset_path, "train/metadata.csv")) | |
self.path = [os.path.join(dataset_path, "train", file_name) for file_name in metadata["file_name"]] | |
self.text = metadata["text"].to_list() | |
self.image_processor = transforms.Compose( | |
[ | |
transforms.Resize(max(height, width), interpolation=transforms.InterpolationMode.BILINEAR), | |
transforms.CenterCrop((height, width)) if center_crop else transforms.RandomCrop((height, width)), | |
transforms.RandomHorizontalFlip() if random_flip else transforms.Lambda(lambda x: x), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
def __getitem__(self, index): | |
data_id = torch.randint(0, len(self.path), (1,))[0] | |
data_id = (data_id + index) % len(self.path) # For fixed seed. | |
text = self.text[data_id] | |
image = Image.open(self.path[data_id]).convert("RGB") | |
image = self.image_processor(image) | |
return {"text": text, "image": image} | |
def __len__(self): | |
return self.steps_per_epoch | |