wenmengzhou's picture
add code and adapt to zero gpus
703e263 verified
raw
history blame
23.7 kB
import os, torch, hashlib, json, importlib
from safetensors import safe_open
from torch import Tensor
from typing_extensions import Literal, TypeAlias
from typing import List
from .downloader import download_models, Preset_model_id, Preset_model_website
from .sd_text_encoder import SDTextEncoder
from .sd_unet import SDUNet
from .sd_vae_encoder import SDVAEEncoder
from .sd_vae_decoder import SDVAEDecoder
from .lora import SDLoRAFromCivitai, SDXLLoRAFromCivitai, GeneralLoRAFromPeft
from .sdxl_text_encoder import SDXLTextEncoder, SDXLTextEncoder2
from .sdxl_unet import SDXLUNet
from .sdxl_vae_decoder import SDXLVAEDecoder
from .sdxl_vae_encoder import SDXLVAEEncoder
from .sd3_text_encoder import SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3
from .sd3_dit import SD3DiT
from .sd3_vae_decoder import SD3VAEDecoder
from .sd3_vae_encoder import SD3VAEEncoder
from .sd_controlnet import SDControlNet
from .sdxl_controlnet import SDXLControlNetUnion
from .sd_motion import SDMotionModel
from .sdxl_motion import SDXLMotionModel
from .svd_image_encoder import SVDImageEncoder
from .svd_unet import SVDUNet
from .svd_vae_decoder import SVDVAEDecoder
from .svd_vae_encoder import SVDVAEEncoder
from .sd_ipadapter import SDIpAdapter, IpAdapterCLIPImageEmbedder
from .sdxl_ipadapter import SDXLIpAdapter, IpAdapterXLCLIPImageEmbedder
from .hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder
from .hunyuan_dit import HunyuanDiT
from .flux_dit import FluxDiT
from .flux_text_encoder import FluxTextEncoder1, FluxTextEncoder2
from .flux_vae import FluxVAEEncoder, FluxVAEDecoder
from ..configs.model_config import model_loader_configs, huggingface_model_loader_configs, patch_model_loader_configs
def load_state_dict(file_path, torch_dtype=None):
if file_path.endswith(".safetensors"):
return load_state_dict_from_safetensors(file_path, torch_dtype=torch_dtype)
else:
return load_state_dict_from_bin(file_path, torch_dtype=torch_dtype)
def load_state_dict_from_safetensors(file_path, torch_dtype=None):
state_dict = {}
with safe_open(file_path, framework="pt", device="cpu") as f:
for k in f.keys():
state_dict[k] = f.get_tensor(k)
if torch_dtype is not None:
state_dict[k] = state_dict[k].to(torch_dtype)
return state_dict
def load_state_dict_from_bin(file_path, torch_dtype=None):
state_dict = torch.load(file_path, map_location="cpu")
if torch_dtype is not None:
for i in state_dict:
if isinstance(state_dict[i], torch.Tensor):
state_dict[i] = state_dict[i].to(torch_dtype)
return state_dict
def search_for_embeddings(state_dict):
embeddings = []
for k in state_dict:
if isinstance(state_dict[k], torch.Tensor):
embeddings.append(state_dict[k])
elif isinstance(state_dict[k], dict):
embeddings += search_for_embeddings(state_dict[k])
return embeddings
def search_parameter(param, state_dict):
for name, param_ in state_dict.items():
if param.numel() == param_.numel():
if param.shape == param_.shape:
if torch.dist(param, param_) < 1e-3:
return name
else:
if torch.dist(param.flatten(), param_.flatten()) < 1e-3:
return name
return None
def build_rename_dict(source_state_dict, target_state_dict, split_qkv=False):
matched_keys = set()
with torch.no_grad():
for name in source_state_dict:
rename = search_parameter(source_state_dict[name], target_state_dict)
if rename is not None:
print(f'"{name}": "{rename}",')
matched_keys.add(rename)
elif split_qkv and len(source_state_dict[name].shape)>=1 and source_state_dict[name].shape[0]%3==0:
length = source_state_dict[name].shape[0] // 3
rename = []
for i in range(3):
rename.append(search_parameter(source_state_dict[name][i*length: i*length+length], target_state_dict))
if None not in rename:
print(f'"{name}": {rename},')
for rename_ in rename:
matched_keys.add(rename_)
for name in target_state_dict:
if name not in matched_keys:
print("Cannot find", name, target_state_dict[name].shape)
def search_for_files(folder, extensions):
files = []
if os.path.isdir(folder):
for file in sorted(os.listdir(folder)):
files += search_for_files(os.path.join(folder, file), extensions)
elif os.path.isfile(folder):
for extension in extensions:
if folder.endswith(extension):
files.append(folder)
break
return files
def convert_state_dict_keys_to_single_str(state_dict, with_shape=True):
keys = []
for key, value in state_dict.items():
if isinstance(key, str):
if isinstance(value, Tensor):
if with_shape:
shape = "_".join(map(str, list(value.shape)))
keys.append(key + ":" + shape)
keys.append(key)
elif isinstance(value, dict):
keys.append(key + "|" + convert_state_dict_keys_to_single_str(value, with_shape=with_shape))
keys.sort()
keys_str = ",".join(keys)
return keys_str
def split_state_dict_with_prefix(state_dict):
keys = sorted([key for key in state_dict if isinstance(key, str)])
prefix_dict = {}
for key in keys:
prefix = key if "." not in key else key.split(".")[0]
if prefix not in prefix_dict:
prefix_dict[prefix] = []
prefix_dict[prefix].append(key)
state_dicts = []
for prefix, keys in prefix_dict.items():
sub_state_dict = {key: state_dict[key] for key in keys}
state_dicts.append(sub_state_dict)
return state_dicts
def hash_state_dict_keys(state_dict, with_shape=True):
keys_str = convert_state_dict_keys_to_single_str(state_dict, with_shape=with_shape)
keys_str = keys_str.encode(encoding="UTF-8")
return hashlib.md5(keys_str).hexdigest()
def load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device):
loaded_model_names, loaded_models = [], []
for model_name, model_class in zip(model_names, model_classes):
print(f" model_name: {model_name} model_class: {model_class.__name__}")
state_dict_converter = model_class.state_dict_converter()
if model_resource == "civitai":
state_dict_results = state_dict_converter.from_civitai(state_dict)
elif model_resource == "diffusers":
state_dict_results = state_dict_converter.from_diffusers(state_dict)
if isinstance(state_dict_results, tuple):
model_state_dict, extra_kwargs = state_dict_results
print(f" This model is initialized with extra kwargs: {extra_kwargs}")
else:
model_state_dict, extra_kwargs = state_dict_results, {}
torch_dtype = torch.float32 if extra_kwargs.get("upcast_to_float32", False) else torch_dtype
model = model_class(**extra_kwargs).to(dtype=torch_dtype, device=device)
model.load_state_dict(model_state_dict)
loaded_model_names.append(model_name)
loaded_models.append(model)
return loaded_model_names, loaded_models
def load_model_from_huggingface_folder(file_path, model_names, model_classes, torch_dtype, device):
loaded_model_names, loaded_models = [], []
for model_name, model_class in zip(model_names, model_classes):
model = model_class.from_pretrained(file_path, torch_dtype=torch_dtype).eval()
if torch_dtype == torch.float16 and hasattr(model, "half"):
model = model.half()
model = model.to(device=device)
loaded_model_names.append(model_name)
loaded_models.append(model)
return loaded_model_names, loaded_models
def load_single_patch_model_from_single_file(state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device):
print(f" model_name: {model_name} model_class: {model_class.__name__} extra_kwargs: {extra_kwargs}")
base_state_dict = base_model.state_dict()
base_model.to("cpu")
del base_model
model = model_class(**extra_kwargs)
model.load_state_dict(base_state_dict, strict=False)
model.load_state_dict(state_dict, strict=False)
model.to(dtype=torch_dtype, device=device)
return model
def load_patch_model_from_single_file(state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device):
loaded_model_names, loaded_models = [], []
for model_name, model_class in zip(model_names, model_classes):
while True:
for model_id in range(len(model_manager.model)):
base_model_name = model_manager.model_name[model_id]
if base_model_name == model_name:
base_model_path = model_manager.model_path[model_id]
base_model = model_manager.model[model_id]
print(f" Adding patch model to {base_model_name} ({base_model_path})")
patched_model = load_single_patch_model_from_single_file(
state_dict, model_name, model_class, base_model, extra_kwargs, torch_dtype, device)
loaded_model_names.append(base_model_name)
loaded_models.append(patched_model)
model_manager.model.pop(model_id)
model_manager.model_path.pop(model_id)
model_manager.model_name.pop(model_id)
break
else:
break
return loaded_model_names, loaded_models
class ModelDetectorTemplate:
def __init__(self):
pass
def match(self, file_path="", state_dict={}):
return False
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
return [], []
class ModelDetectorFromSingleFile:
def __init__(self, model_loader_configs=[]):
self.keys_hash_with_shape_dict = {}
self.keys_hash_dict = {}
for metadata in model_loader_configs:
self.add_model_metadata(*metadata)
def add_model_metadata(self, keys_hash, keys_hash_with_shape, model_names, model_classes, model_resource):
self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_names, model_classes, model_resource)
if keys_hash is not None:
self.keys_hash_dict[keys_hash] = (model_names, model_classes, model_resource)
def match(self, file_path="", state_dict={}):
if os.path.isdir(file_path):
return False
if len(state_dict) == 0:
state_dict = load_state_dict(file_path)
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
return True
keys_hash = hash_state_dict_keys(state_dict, with_shape=False)
if keys_hash in self.keys_hash_dict:
return True
return False
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
if len(state_dict) == 0:
state_dict = load_state_dict(file_path)
# Load models with strict matching
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
model_names, model_classes, model_resource = self.keys_hash_with_shape_dict[keys_hash_with_shape]
loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device)
return loaded_model_names, loaded_models
# Load models without strict matching
# (the shape of parameters may be inconsistent, and the state_dict_converter will modify the model architecture)
keys_hash = hash_state_dict_keys(state_dict, with_shape=False)
if keys_hash in self.keys_hash_dict:
model_names, model_classes, model_resource = self.keys_hash_dict[keys_hash]
loaded_model_names, loaded_models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, torch_dtype, device)
return loaded_model_names, loaded_models
return loaded_model_names, loaded_models
class ModelDetectorFromSplitedSingleFile(ModelDetectorFromSingleFile):
def __init__(self, model_loader_configs=[]):
super().__init__(model_loader_configs)
def match(self, file_path="", state_dict={}):
if os.path.isdir(file_path):
return False
if len(state_dict) == 0:
state_dict = load_state_dict(file_path)
splited_state_dict = split_state_dict_with_prefix(state_dict)
for sub_state_dict in splited_state_dict:
if super().match(file_path, sub_state_dict):
return True
return False
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
# Split the state_dict and load from each component
splited_state_dict = split_state_dict_with_prefix(state_dict)
valid_state_dict = {}
for sub_state_dict in splited_state_dict:
if super().match(file_path, sub_state_dict):
valid_state_dict.update(sub_state_dict)
if super().match(file_path, valid_state_dict):
loaded_model_names, loaded_models = super().load(file_path, valid_state_dict, device, torch_dtype)
else:
loaded_model_names, loaded_models = [], []
for sub_state_dict in splited_state_dict:
if super().match(file_path, sub_state_dict):
loaded_model_names_, loaded_models_ = super().load(file_path, valid_state_dict, device, torch_dtype)
loaded_model_names += loaded_model_names_
loaded_models += loaded_models_
return loaded_model_names, loaded_models
class ModelDetectorFromHuggingfaceFolder:
def __init__(self, model_loader_configs=[]):
self.architecture_dict = {}
for metadata in model_loader_configs:
self.add_model_metadata(*metadata)
def add_model_metadata(self, architecture, huggingface_lib, model_name, redirected_architecture):
self.architecture_dict[architecture] = (huggingface_lib, model_name, redirected_architecture)
def match(self, file_path="", state_dict={}):
if os.path.isfile(file_path):
return False
file_list = os.listdir(file_path)
if "config.json" not in file_list:
return False
with open(os.path.join(file_path, "config.json"), "r") as f:
config = json.load(f)
if "architectures" not in config:
return False
return True
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, **kwargs):
with open(os.path.join(file_path, "config.json"), "r") as f:
config = json.load(f)
loaded_model_names, loaded_models = [], []
for architecture in config["architectures"]:
huggingface_lib, model_name, redirected_architecture = self.architecture_dict[architecture]
if redirected_architecture is not None:
architecture = redirected_architecture
model_class = importlib.import_module(huggingface_lib).__getattribute__(architecture)
loaded_model_names_, loaded_models_ = load_model_from_huggingface_folder(file_path, [model_name], [model_class], torch_dtype, device)
loaded_model_names += loaded_model_names_
loaded_models += loaded_models_
return loaded_model_names, loaded_models
class ModelDetectorFromPatchedSingleFile:
def __init__(self, model_loader_configs=[]):
self.keys_hash_with_shape_dict = {}
for metadata in model_loader_configs:
self.add_model_metadata(*metadata)
def add_model_metadata(self, keys_hash_with_shape, model_name, model_class, extra_kwargs):
self.keys_hash_with_shape_dict[keys_hash_with_shape] = (model_name, model_class, extra_kwargs)
def match(self, file_path="", state_dict={}):
if os.path.isdir(file_path):
return False
if len(state_dict) == 0:
state_dict = load_state_dict(file_path)
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
return True
return False
def load(self, file_path="", state_dict={}, device="cuda", torch_dtype=torch.float16, model_manager=None, **kwargs):
if len(state_dict) == 0:
state_dict = load_state_dict(file_path)
# Load models with strict matching
loaded_model_names, loaded_models = [], []
keys_hash_with_shape = hash_state_dict_keys(state_dict, with_shape=True)
if keys_hash_with_shape in self.keys_hash_with_shape_dict:
model_names, model_classes, extra_kwargs = self.keys_hash_with_shape_dict[keys_hash_with_shape]
loaded_model_names_, loaded_models_ = load_patch_model_from_single_file(
state_dict, model_names, model_classes, extra_kwargs, model_manager, torch_dtype, device)
loaded_model_names += loaded_model_names_
loaded_models += loaded_models_
return loaded_model_names, loaded_models
class ModelManager:
def __init__(
self,
torch_dtype=torch.float16,
device="cuda",
model_id_list: List[Preset_model_id] = [],
downloading_priority: List[Preset_model_website] = ["ModelScope", "HuggingFace"],
file_path_list: List[str] = [],
):
self.torch_dtype = torch_dtype
self.device = device
self.model = []
self.model_path = []
self.model_name = []
downloaded_files = download_models(model_id_list, downloading_priority) if len(model_id_list) > 0 else []
self.model_detector = [
ModelDetectorFromSingleFile(model_loader_configs),
ModelDetectorFromSplitedSingleFile(model_loader_configs),
ModelDetectorFromHuggingfaceFolder(huggingface_model_loader_configs),
ModelDetectorFromPatchedSingleFile(patch_model_loader_configs),
]
self.load_models(downloaded_files + file_path_list)
def load_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], model_resource=None):
print(f"Loading models from file: {file_path}")
if len(state_dict) == 0:
state_dict = load_state_dict(file_path)
model_names, models = load_model_from_single_file(state_dict, model_names, model_classes, model_resource, self.torch_dtype, self.device)
for model_name, model in zip(model_names, models):
self.model.append(model)
self.model_path.append(file_path)
self.model_name.append(model_name)
print(f" The following models are loaded: {model_names}.")
def load_model_from_huggingface_folder(self, file_path="", model_names=[], model_classes=[]):
print(f"Loading models from folder: {file_path}")
model_names, models = load_model_from_huggingface_folder(file_path, model_names, model_classes, self.torch_dtype, self.device)
for model_name, model in zip(model_names, models):
self.model.append(model)
self.model_path.append(file_path)
self.model_name.append(model_name)
print(f" The following models are loaded: {model_names}.")
def load_patch_model_from_single_file(self, file_path="", state_dict={}, model_names=[], model_classes=[], extra_kwargs={}):
print(f"Loading patch models from file: {file_path}")
model_names, models = load_patch_model_from_single_file(
state_dict, model_names, model_classes, extra_kwargs, self, self.torch_dtype, self.device)
for model_name, model in zip(model_names, models):
self.model.append(model)
self.model_path.append(file_path)
self.model_name.append(model_name)
print(f" The following patched models are loaded: {model_names}.")
def load_lora(self, file_path="", state_dict={}, lora_alpha=1.0):
print(f"Loading LoRA models from file: {file_path}")
if len(state_dict) == 0:
state_dict = load_state_dict(file_path)
for model_name, model, model_path in zip(self.model_name, self.model, self.model_path):
for lora in [SDLoRAFromCivitai(), SDXLLoRAFromCivitai(), GeneralLoRAFromPeft()]:
match_results = lora.match(model, state_dict)
if match_results is not None:
print(f" Adding LoRA to {model_name} ({model_path}).")
lora_prefix, model_resource = match_results
lora.load(model, state_dict, lora_prefix, alpha=lora_alpha, model_resource=model_resource)
break
def load_model(self, file_path, model_names=None):
print(f"Loading models from: {file_path}")
if os.path.isfile(file_path):
state_dict = load_state_dict(file_path)
else:
state_dict = None
for model_detector in self.model_detector:
if model_detector.match(file_path, state_dict):
model_names, models = model_detector.load(
file_path, state_dict,
device=self.device, torch_dtype=self.torch_dtype,
allowed_model_names=model_names, model_manager=self
)
for model_name, model in zip(model_names, models):
self.model.append(model)
self.model_path.append(file_path)
self.model_name.append(model_name)
print(f" The following models are loaded: {model_names}.")
break
else:
print(f" We cannot detect the model type. No models are loaded.")
def load_models(self, file_path_list, model_names=None):
for file_path in file_path_list:
self.load_model(file_path, model_names)
def fetch_model(self, model_name, file_path=None, require_model_path=False):
fetched_models = []
fetched_model_paths = []
for model, model_path, model_name_ in zip(self.model, self.model_path, self.model_name):
if file_path is not None and file_path != model_path:
continue
if model_name == model_name_:
fetched_models.append(model)
fetched_model_paths.append(model_path)
if len(fetched_models) == 0:
print(f"No {model_name} models available.")
return None
if len(fetched_models) == 1:
print(f"Using {model_name} from {fetched_model_paths[0]}.")
else:
print(f"More than one {model_name} models are loaded in model manager: {fetched_model_paths}. Using {model_name} from {fetched_model_paths[0]}.")
if require_model_path:
return fetched_models[0], fetched_model_paths[0]
else:
return fetched_models[0]
def to(self, device):
for model in self.model:
model.to(device)