Spaces:
Running
on
Zero
Running
on
Zero
import torch, math | |
from .attention import Attention | |
from .tiler import TileWorker | |
class Timesteps(torch.nn.Module): | |
def __init__(self, num_channels): | |
super().__init__() | |
self.num_channels = num_channels | |
def forward(self, timesteps): | |
half_dim = self.num_channels // 2 | |
exponent = -math.log(10000) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device) / half_dim | |
timesteps = timesteps.unsqueeze(-1) | |
emb = timesteps.float() * torch.exp(exponent) | |
emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=-1) | |
return emb | |
class GEGLU(torch.nn.Module): | |
def __init__(self, dim_in, dim_out): | |
super().__init__() | |
self.proj = torch.nn.Linear(dim_in, dim_out * 2) | |
def forward(self, hidden_states): | |
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) | |
return hidden_states * torch.nn.functional.gelu(gate) | |
class BasicTransformerBlock(torch.nn.Module): | |
def __init__(self, dim, num_attention_heads, attention_head_dim, cross_attention_dim): | |
super().__init__() | |
# 1. Self-Attn | |
self.norm1 = torch.nn.LayerNorm(dim, elementwise_affine=True) | |
self.attn1 = Attention(q_dim=dim, num_heads=num_attention_heads, head_dim=attention_head_dim, bias_out=True) | |
# 2. Cross-Attn | |
self.norm2 = torch.nn.LayerNorm(dim, elementwise_affine=True) | |
self.attn2 = Attention(q_dim=dim, kv_dim=cross_attention_dim, num_heads=num_attention_heads, head_dim=attention_head_dim, bias_out=True) | |
# 3. Feed-forward | |
self.norm3 = torch.nn.LayerNorm(dim, elementwise_affine=True) | |
self.act_fn = GEGLU(dim, dim * 4) | |
self.ff = torch.nn.Linear(dim * 4, dim) | |
def forward(self, hidden_states, encoder_hidden_states, ipadapter_kwargs=None): | |
# 1. Self-Attention | |
norm_hidden_states = self.norm1(hidden_states) | |
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None) | |
hidden_states = attn_output + hidden_states | |
# 2. Cross-Attention | |
norm_hidden_states = self.norm2(hidden_states) | |
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states, ipadapter_kwargs=ipadapter_kwargs) | |
hidden_states = attn_output + hidden_states | |
# 3. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
ff_output = self.act_fn(norm_hidden_states) | |
ff_output = self.ff(ff_output) | |
hidden_states = ff_output + hidden_states | |
return hidden_states | |
class DownSampler(torch.nn.Module): | |
def __init__(self, channels, padding=1, extra_padding=False): | |
super().__init__() | |
self.conv = torch.nn.Conv2d(channels, channels, 3, stride=2, padding=padding) | |
self.extra_padding = extra_padding | |
def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): | |
if self.extra_padding: | |
hidden_states = torch.nn.functional.pad(hidden_states, (0, 1, 0, 1), mode="constant", value=0) | |
hidden_states = self.conv(hidden_states) | |
return hidden_states, time_emb, text_emb, res_stack | |
class UpSampler(torch.nn.Module): | |
def __init__(self, channels): | |
super().__init__() | |
self.conv = torch.nn.Conv2d(channels, channels, 3, padding=1) | |
def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): | |
hidden_states = torch.nn.functional.interpolate(hidden_states, scale_factor=2.0, mode="nearest") | |
hidden_states = self.conv(hidden_states) | |
return hidden_states, time_emb, text_emb, res_stack | |
class ResnetBlock(torch.nn.Module): | |
def __init__(self, in_channels, out_channels, temb_channels=None, groups=32, eps=1e-5): | |
super().__init__() | |
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if temb_channels is not None: | |
self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels) | |
self.norm2 = torch.nn.GroupNorm(num_groups=groups, num_channels=out_channels, eps=eps, affine=True) | |
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.nonlinearity = torch.nn.SiLU() | |
self.conv_shortcut = None | |
if in_channels != out_channels: | |
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True) | |
def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): | |
x = hidden_states | |
x = self.norm1(x) | |
x = self.nonlinearity(x) | |
x = self.conv1(x) | |
if time_emb is not None: | |
emb = self.nonlinearity(time_emb) | |
emb = self.time_emb_proj(emb)[:, :, None, None] | |
x = x + emb | |
x = self.norm2(x) | |
x = self.nonlinearity(x) | |
x = self.conv2(x) | |
if self.conv_shortcut is not None: | |
hidden_states = self.conv_shortcut(hidden_states) | |
hidden_states = hidden_states + x | |
return hidden_states, time_emb, text_emb, res_stack | |
class AttentionBlock(torch.nn.Module): | |
def __init__(self, num_attention_heads, attention_head_dim, in_channels, num_layers=1, cross_attention_dim=None, norm_num_groups=32, eps=1e-5, need_proj_out=True): | |
super().__init__() | |
inner_dim = num_attention_heads * attention_head_dim | |
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True) | |
self.proj_in = torch.nn.Linear(in_channels, inner_dim) | |
self.transformer_blocks = torch.nn.ModuleList([ | |
BasicTransformerBlock( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
cross_attention_dim=cross_attention_dim | |
) | |
for d in range(num_layers) | |
]) | |
self.need_proj_out = need_proj_out | |
if need_proj_out: | |
self.proj_out = torch.nn.Linear(inner_dim, in_channels) | |
def forward( | |
self, | |
hidden_states, time_emb, text_emb, res_stack, | |
cross_frame_attention=False, | |
tiled=False, tile_size=64, tile_stride=32, | |
ipadapter_kwargs_list={}, | |
**kwargs | |
): | |
batch, _, height, width = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) | |
hidden_states = self.proj_in(hidden_states) | |
if cross_frame_attention: | |
hidden_states = hidden_states.reshape(1, batch * height * width, inner_dim) | |
encoder_hidden_states = text_emb.mean(dim=0, keepdim=True) | |
else: | |
encoder_hidden_states = text_emb | |
if encoder_hidden_states.shape[0] != hidden_states.shape[0]: | |
encoder_hidden_states = encoder_hidden_states.repeat(hidden_states.shape[0], 1, 1) | |
if tiled: | |
tile_size = min(tile_size, min(height, width)) | |
hidden_states = hidden_states.permute(0, 2, 1).reshape(batch, inner_dim, height, width) | |
def block_tile_forward(x): | |
b, c, h, w = x.shape | |
x = x.permute(0, 2, 3, 1).reshape(b, h*w, c) | |
x = block(x, encoder_hidden_states) | |
x = x.reshape(b, h, w, c).permute(0, 3, 1, 2) | |
return x | |
for block in self.transformer_blocks: | |
hidden_states = TileWorker().tiled_forward( | |
block_tile_forward, | |
hidden_states, | |
tile_size, | |
tile_stride, | |
tile_device=hidden_states.device, | |
tile_dtype=hidden_states.dtype | |
) | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) | |
else: | |
for block_id, block in enumerate(self.transformer_blocks): | |
hidden_states = block( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
ipadapter_kwargs=ipadapter_kwargs_list.get(block_id, None) | |
) | |
if cross_frame_attention: | |
hidden_states = hidden_states.reshape(batch, height * width, inner_dim) | |
if self.need_proj_out: | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() | |
hidden_states = hidden_states + residual | |
else: | |
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() | |
return hidden_states, time_emb, text_emb, res_stack | |
class PushBlock(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): | |
res_stack.append(hidden_states) | |
return hidden_states, time_emb, text_emb, res_stack | |
class PopBlock(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, hidden_states, time_emb, text_emb, res_stack, **kwargs): | |
res_hidden_states = res_stack.pop() | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
return hidden_states, time_emb, text_emb, res_stack | |
class SDUNet(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.time_proj = Timesteps(320) | |
self.time_embedding = torch.nn.Sequential( | |
torch.nn.Linear(320, 1280), | |
torch.nn.SiLU(), | |
torch.nn.Linear(1280, 1280) | |
) | |
self.conv_in = torch.nn.Conv2d(4, 320, kernel_size=3, padding=1) | |
self.blocks = torch.nn.ModuleList([ | |
# CrossAttnDownBlock2D | |
ResnetBlock(320, 320, 1280), | |
AttentionBlock(8, 40, 320, 1, 768, eps=1e-6), | |
PushBlock(), | |
ResnetBlock(320, 320, 1280), | |
AttentionBlock(8, 40, 320, 1, 768, eps=1e-6), | |
PushBlock(), | |
DownSampler(320), | |
PushBlock(), | |
# CrossAttnDownBlock2D | |
ResnetBlock(320, 640, 1280), | |
AttentionBlock(8, 80, 640, 1, 768, eps=1e-6), | |
PushBlock(), | |
ResnetBlock(640, 640, 1280), | |
AttentionBlock(8, 80, 640, 1, 768, eps=1e-6), | |
PushBlock(), | |
DownSampler(640), | |
PushBlock(), | |
# CrossAttnDownBlock2D | |
ResnetBlock(640, 1280, 1280), | |
AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6), | |
PushBlock(), | |
ResnetBlock(1280, 1280, 1280), | |
AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6), | |
PushBlock(), | |
DownSampler(1280), | |
PushBlock(), | |
# DownBlock2D | |
ResnetBlock(1280, 1280, 1280), | |
PushBlock(), | |
ResnetBlock(1280, 1280, 1280), | |
PushBlock(), | |
# UNetMidBlock2DCrossAttn | |
ResnetBlock(1280, 1280, 1280), | |
AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6), | |
ResnetBlock(1280, 1280, 1280), | |
# UpBlock2D | |
PopBlock(), | |
ResnetBlock(2560, 1280, 1280), | |
PopBlock(), | |
ResnetBlock(2560, 1280, 1280), | |
PopBlock(), | |
ResnetBlock(2560, 1280, 1280), | |
UpSampler(1280), | |
# CrossAttnUpBlock2D | |
PopBlock(), | |
ResnetBlock(2560, 1280, 1280), | |
AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6), | |
PopBlock(), | |
ResnetBlock(2560, 1280, 1280), | |
AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6), | |
PopBlock(), | |
ResnetBlock(1920, 1280, 1280), | |
AttentionBlock(8, 160, 1280, 1, 768, eps=1e-6), | |
UpSampler(1280), | |
# CrossAttnUpBlock2D | |
PopBlock(), | |
ResnetBlock(1920, 640, 1280), | |
AttentionBlock(8, 80, 640, 1, 768, eps=1e-6), | |
PopBlock(), | |
ResnetBlock(1280, 640, 1280), | |
AttentionBlock(8, 80, 640, 1, 768, eps=1e-6), | |
PopBlock(), | |
ResnetBlock(960, 640, 1280), | |
AttentionBlock(8, 80, 640, 1, 768, eps=1e-6), | |
UpSampler(640), | |
# CrossAttnUpBlock2D | |
PopBlock(), | |
ResnetBlock(960, 320, 1280), | |
AttentionBlock(8, 40, 320, 1, 768, eps=1e-6), | |
PopBlock(), | |
ResnetBlock(640, 320, 1280), | |
AttentionBlock(8, 40, 320, 1, 768, eps=1e-6), | |
PopBlock(), | |
ResnetBlock(640, 320, 1280), | |
AttentionBlock(8, 40, 320, 1, 768, eps=1e-6), | |
]) | |
self.conv_norm_out = torch.nn.GroupNorm(num_channels=320, num_groups=32, eps=1e-5) | |
self.conv_act = torch.nn.SiLU() | |
self.conv_out = torch.nn.Conv2d(320, 4, kernel_size=3, padding=1) | |
def forward(self, sample, timestep, encoder_hidden_states, **kwargs): | |
# 1. time | |
time_emb = self.time_proj(timestep).to(sample.dtype) | |
time_emb = self.time_embedding(time_emb) | |
# 2. pre-process | |
hidden_states = self.conv_in(sample) | |
text_emb = encoder_hidden_states | |
res_stack = [hidden_states] | |
# 3. blocks | |
for i, block in enumerate(self.blocks): | |
hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack) | |
# 4. output | |
hidden_states = self.conv_norm_out(hidden_states) | |
hidden_states = self.conv_act(hidden_states) | |
hidden_states = self.conv_out(hidden_states) | |
return hidden_states | |
def state_dict_converter(): | |
return SDUNetStateDictConverter() | |
class SDUNetStateDictConverter: | |
def __init__(self): | |
pass | |
def from_diffusers(self, state_dict): | |
# architecture | |
block_types = [ | |
'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock', | |
'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock', | |
'ResnetBlock', 'AttentionBlock', 'PushBlock', 'ResnetBlock', 'AttentionBlock', 'PushBlock', 'DownSampler', 'PushBlock', | |
'ResnetBlock', 'PushBlock', 'ResnetBlock', 'PushBlock', | |
'ResnetBlock', 'AttentionBlock', 'ResnetBlock', | |
'PopBlock', 'ResnetBlock', 'PopBlock', 'ResnetBlock', 'PopBlock', 'ResnetBlock', 'UpSampler', | |
'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'UpSampler', | |
'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'UpSampler', | |
'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock', 'PopBlock', 'ResnetBlock', 'AttentionBlock' | |
] | |
# Rename each parameter | |
name_list = sorted([name for name in state_dict]) | |
rename_dict = {} | |
block_id = {"ResnetBlock": -1, "AttentionBlock": -1, "DownSampler": -1, "UpSampler": -1} | |
last_block_type_with_id = {"ResnetBlock": "", "AttentionBlock": "", "DownSampler": "", "UpSampler": ""} | |
for name in name_list: | |
names = name.split(".") | |
if names[0] in ["conv_in", "conv_norm_out", "conv_out"]: | |
pass | |
elif names[0] in ["time_embedding", "add_embedding"]: | |
if names[0] == "add_embedding": | |
names[0] = "add_time_embedding" | |
names[1] = {"linear_1": "0", "linear_2": "2"}[names[1]] | |
elif names[0] in ["down_blocks", "mid_block", "up_blocks"]: | |
if names[0] == "mid_block": | |
names.insert(1, "0") | |
block_type = {"resnets": "ResnetBlock", "attentions": "AttentionBlock", "downsamplers": "DownSampler", "upsamplers": "UpSampler"}[names[2]] | |
block_type_with_id = ".".join(names[:4]) | |
if block_type_with_id != last_block_type_with_id[block_type]: | |
block_id[block_type] += 1 | |
last_block_type_with_id[block_type] = block_type_with_id | |
while block_id[block_type] < len(block_types) and block_types[block_id[block_type]] != block_type: | |
block_id[block_type] += 1 | |
block_type_with_id = ".".join(names[:4]) | |
names = ["blocks", str(block_id[block_type])] + names[4:] | |
if "ff" in names: | |
ff_index = names.index("ff") | |
component = ".".join(names[ff_index:ff_index+3]) | |
component = {"ff.net.0": "act_fn", "ff.net.2": "ff"}[component] | |
names = names[:ff_index] + [component] + names[ff_index+3:] | |
if "to_out" in names: | |
names.pop(names.index("to_out") + 1) | |
else: | |
raise ValueError(f"Unknown parameters: {name}") | |
rename_dict[name] = ".".join(names) | |
# Convert state_dict | |
state_dict_ = {} | |
for name, param in state_dict.items(): | |
if ".proj_in." in name or ".proj_out." in name: | |
param = param.squeeze() | |
state_dict_[rename_dict[name]] = param | |
return state_dict_ | |
def from_civitai(self, state_dict): | |
rename_dict = { | |
"model.diffusion_model.input_blocks.0.0.bias": "conv_in.bias", | |
"model.diffusion_model.input_blocks.0.0.weight": "conv_in.weight", | |
"model.diffusion_model.input_blocks.1.0.emb_layers.1.bias": "blocks.0.time_emb_proj.bias", | |
"model.diffusion_model.input_blocks.1.0.emb_layers.1.weight": "blocks.0.time_emb_proj.weight", | |
"model.diffusion_model.input_blocks.1.0.in_layers.0.bias": "blocks.0.norm1.bias", | |
"model.diffusion_model.input_blocks.1.0.in_layers.0.weight": "blocks.0.norm1.weight", | |
"model.diffusion_model.input_blocks.1.0.in_layers.2.bias": "blocks.0.conv1.bias", | |
"model.diffusion_model.input_blocks.1.0.in_layers.2.weight": "blocks.0.conv1.weight", | |
"model.diffusion_model.input_blocks.1.0.out_layers.0.bias": "blocks.0.norm2.bias", | |
"model.diffusion_model.input_blocks.1.0.out_layers.0.weight": "blocks.0.norm2.weight", | |
"model.diffusion_model.input_blocks.1.0.out_layers.3.bias": "blocks.0.conv2.bias", | |
"model.diffusion_model.input_blocks.1.0.out_layers.3.weight": "blocks.0.conv2.weight", | |
"model.diffusion_model.input_blocks.1.1.norm.bias": "blocks.1.norm.bias", | |
"model.diffusion_model.input_blocks.1.1.norm.weight": "blocks.1.norm.weight", | |
"model.diffusion_model.input_blocks.1.1.proj_in.bias": "blocks.1.proj_in.bias", | |
"model.diffusion_model.input_blocks.1.1.proj_in.weight": "blocks.1.proj_in.weight", | |
"model.diffusion_model.input_blocks.1.1.proj_out.bias": "blocks.1.proj_out.bias", | |
"model.diffusion_model.input_blocks.1.1.proj_out.weight": "blocks.1.proj_out.weight", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_k.weight": "blocks.1.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.1.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.1.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_q.weight": "blocks.1.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn1.to_v.weight": "blocks.1.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight": "blocks.1.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.1.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.1.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_q.weight": "blocks.1.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v.weight": "blocks.1.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.1.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.1.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.bias": "blocks.1.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.ff.net.2.weight": "blocks.1.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.bias": "blocks.1.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm1.weight": "blocks.1.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.bias": "blocks.1.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.weight": "blocks.1.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.bias": "blocks.1.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.weight": "blocks.1.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.input_blocks.10.0.emb_layers.1.bias": "blocks.24.time_emb_proj.bias", | |
"model.diffusion_model.input_blocks.10.0.emb_layers.1.weight": "blocks.24.time_emb_proj.weight", | |
"model.diffusion_model.input_blocks.10.0.in_layers.0.bias": "blocks.24.norm1.bias", | |
"model.diffusion_model.input_blocks.10.0.in_layers.0.weight": "blocks.24.norm1.weight", | |
"model.diffusion_model.input_blocks.10.0.in_layers.2.bias": "blocks.24.conv1.bias", | |
"model.diffusion_model.input_blocks.10.0.in_layers.2.weight": "blocks.24.conv1.weight", | |
"model.diffusion_model.input_blocks.10.0.out_layers.0.bias": "blocks.24.norm2.bias", | |
"model.diffusion_model.input_blocks.10.0.out_layers.0.weight": "blocks.24.norm2.weight", | |
"model.diffusion_model.input_blocks.10.0.out_layers.3.bias": "blocks.24.conv2.bias", | |
"model.diffusion_model.input_blocks.10.0.out_layers.3.weight": "blocks.24.conv2.weight", | |
"model.diffusion_model.input_blocks.11.0.emb_layers.1.bias": "blocks.26.time_emb_proj.bias", | |
"model.diffusion_model.input_blocks.11.0.emb_layers.1.weight": "blocks.26.time_emb_proj.weight", | |
"model.diffusion_model.input_blocks.11.0.in_layers.0.bias": "blocks.26.norm1.bias", | |
"model.diffusion_model.input_blocks.11.0.in_layers.0.weight": "blocks.26.norm1.weight", | |
"model.diffusion_model.input_blocks.11.0.in_layers.2.bias": "blocks.26.conv1.bias", | |
"model.diffusion_model.input_blocks.11.0.in_layers.2.weight": "blocks.26.conv1.weight", | |
"model.diffusion_model.input_blocks.11.0.out_layers.0.bias": "blocks.26.norm2.bias", | |
"model.diffusion_model.input_blocks.11.0.out_layers.0.weight": "blocks.26.norm2.weight", | |
"model.diffusion_model.input_blocks.11.0.out_layers.3.bias": "blocks.26.conv2.bias", | |
"model.diffusion_model.input_blocks.11.0.out_layers.3.weight": "blocks.26.conv2.weight", | |
"model.diffusion_model.input_blocks.2.0.emb_layers.1.bias": "blocks.3.time_emb_proj.bias", | |
"model.diffusion_model.input_blocks.2.0.emb_layers.1.weight": "blocks.3.time_emb_proj.weight", | |
"model.diffusion_model.input_blocks.2.0.in_layers.0.bias": "blocks.3.norm1.bias", | |
"model.diffusion_model.input_blocks.2.0.in_layers.0.weight": "blocks.3.norm1.weight", | |
"model.diffusion_model.input_blocks.2.0.in_layers.2.bias": "blocks.3.conv1.bias", | |
"model.diffusion_model.input_blocks.2.0.in_layers.2.weight": "blocks.3.conv1.weight", | |
"model.diffusion_model.input_blocks.2.0.out_layers.0.bias": "blocks.3.norm2.bias", | |
"model.diffusion_model.input_blocks.2.0.out_layers.0.weight": "blocks.3.norm2.weight", | |
"model.diffusion_model.input_blocks.2.0.out_layers.3.bias": "blocks.3.conv2.bias", | |
"model.diffusion_model.input_blocks.2.0.out_layers.3.weight": "blocks.3.conv2.weight", | |
"model.diffusion_model.input_blocks.2.1.norm.bias": "blocks.4.norm.bias", | |
"model.diffusion_model.input_blocks.2.1.norm.weight": "blocks.4.norm.weight", | |
"model.diffusion_model.input_blocks.2.1.proj_in.bias": "blocks.4.proj_in.bias", | |
"model.diffusion_model.input_blocks.2.1.proj_in.weight": "blocks.4.proj_in.weight", | |
"model.diffusion_model.input_blocks.2.1.proj_out.bias": "blocks.4.proj_out.bias", | |
"model.diffusion_model.input_blocks.2.1.proj_out.weight": "blocks.4.proj_out.weight", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_k.weight": "blocks.4.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.4.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.4.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_q.weight": "blocks.4.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn1.to_v.weight": "blocks.4.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight": "blocks.4.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.4.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.4.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_q.weight": "blocks.4.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v.weight": "blocks.4.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.4.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.4.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.bias": "blocks.4.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.ff.net.2.weight": "blocks.4.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.bias": "blocks.4.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm1.weight": "blocks.4.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.bias": "blocks.4.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm2.weight": "blocks.4.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.bias": "blocks.4.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.weight": "blocks.4.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.input_blocks.3.0.op.bias": "blocks.6.conv.bias", | |
"model.diffusion_model.input_blocks.3.0.op.weight": "blocks.6.conv.weight", | |
"model.diffusion_model.input_blocks.4.0.emb_layers.1.bias": "blocks.8.time_emb_proj.bias", | |
"model.diffusion_model.input_blocks.4.0.emb_layers.1.weight": "blocks.8.time_emb_proj.weight", | |
"model.diffusion_model.input_blocks.4.0.in_layers.0.bias": "blocks.8.norm1.bias", | |
"model.diffusion_model.input_blocks.4.0.in_layers.0.weight": "blocks.8.norm1.weight", | |
"model.diffusion_model.input_blocks.4.0.in_layers.2.bias": "blocks.8.conv1.bias", | |
"model.diffusion_model.input_blocks.4.0.in_layers.2.weight": "blocks.8.conv1.weight", | |
"model.diffusion_model.input_blocks.4.0.out_layers.0.bias": "blocks.8.norm2.bias", | |
"model.diffusion_model.input_blocks.4.0.out_layers.0.weight": "blocks.8.norm2.weight", | |
"model.diffusion_model.input_blocks.4.0.out_layers.3.bias": "blocks.8.conv2.bias", | |
"model.diffusion_model.input_blocks.4.0.out_layers.3.weight": "blocks.8.conv2.weight", | |
"model.diffusion_model.input_blocks.4.0.skip_connection.bias": "blocks.8.conv_shortcut.bias", | |
"model.diffusion_model.input_blocks.4.0.skip_connection.weight": "blocks.8.conv_shortcut.weight", | |
"model.diffusion_model.input_blocks.4.1.norm.bias": "blocks.9.norm.bias", | |
"model.diffusion_model.input_blocks.4.1.norm.weight": "blocks.9.norm.weight", | |
"model.diffusion_model.input_blocks.4.1.proj_in.bias": "blocks.9.proj_in.bias", | |
"model.diffusion_model.input_blocks.4.1.proj_in.weight": "blocks.9.proj_in.weight", | |
"model.diffusion_model.input_blocks.4.1.proj_out.bias": "blocks.9.proj_out.bias", | |
"model.diffusion_model.input_blocks.4.1.proj_out.weight": "blocks.9.proj_out.weight", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_k.weight": "blocks.9.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.9.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.9.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_q.weight": "blocks.9.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn1.to_v.weight": "blocks.9.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight": "blocks.9.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.9.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.9.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_q.weight": "blocks.9.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v.weight": "blocks.9.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.9.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.9.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.bias": "blocks.9.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.ff.net.2.weight": "blocks.9.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.bias": "blocks.9.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm1.weight": "blocks.9.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.bias": "blocks.9.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.weight": "blocks.9.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.bias": "blocks.9.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.weight": "blocks.9.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.input_blocks.5.0.emb_layers.1.bias": "blocks.11.time_emb_proj.bias", | |
"model.diffusion_model.input_blocks.5.0.emb_layers.1.weight": "blocks.11.time_emb_proj.weight", | |
"model.diffusion_model.input_blocks.5.0.in_layers.0.bias": "blocks.11.norm1.bias", | |
"model.diffusion_model.input_blocks.5.0.in_layers.0.weight": "blocks.11.norm1.weight", | |
"model.diffusion_model.input_blocks.5.0.in_layers.2.bias": "blocks.11.conv1.bias", | |
"model.diffusion_model.input_blocks.5.0.in_layers.2.weight": "blocks.11.conv1.weight", | |
"model.diffusion_model.input_blocks.5.0.out_layers.0.bias": "blocks.11.norm2.bias", | |
"model.diffusion_model.input_blocks.5.0.out_layers.0.weight": "blocks.11.norm2.weight", | |
"model.diffusion_model.input_blocks.5.0.out_layers.3.bias": "blocks.11.conv2.bias", | |
"model.diffusion_model.input_blocks.5.0.out_layers.3.weight": "blocks.11.conv2.weight", | |
"model.diffusion_model.input_blocks.5.1.norm.bias": "blocks.12.norm.bias", | |
"model.diffusion_model.input_blocks.5.1.norm.weight": "blocks.12.norm.weight", | |
"model.diffusion_model.input_blocks.5.1.proj_in.bias": "blocks.12.proj_in.bias", | |
"model.diffusion_model.input_blocks.5.1.proj_in.weight": "blocks.12.proj_in.weight", | |
"model.diffusion_model.input_blocks.5.1.proj_out.bias": "blocks.12.proj_out.bias", | |
"model.diffusion_model.input_blocks.5.1.proj_out.weight": "blocks.12.proj_out.weight", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_k.weight": "blocks.12.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.12.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.12.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_q.weight": "blocks.12.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn1.to_v.weight": "blocks.12.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight": "blocks.12.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.12.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.12.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_q.weight": "blocks.12.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v.weight": "blocks.12.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.12.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.12.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.bias": "blocks.12.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.ff.net.2.weight": "blocks.12.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.bias": "blocks.12.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm1.weight": "blocks.12.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.bias": "blocks.12.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm2.weight": "blocks.12.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.bias": "blocks.12.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.weight": "blocks.12.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.input_blocks.6.0.op.bias": "blocks.14.conv.bias", | |
"model.diffusion_model.input_blocks.6.0.op.weight": "blocks.14.conv.weight", | |
"model.diffusion_model.input_blocks.7.0.emb_layers.1.bias": "blocks.16.time_emb_proj.bias", | |
"model.diffusion_model.input_blocks.7.0.emb_layers.1.weight": "blocks.16.time_emb_proj.weight", | |
"model.diffusion_model.input_blocks.7.0.in_layers.0.bias": "blocks.16.norm1.bias", | |
"model.diffusion_model.input_blocks.7.0.in_layers.0.weight": "blocks.16.norm1.weight", | |
"model.diffusion_model.input_blocks.7.0.in_layers.2.bias": "blocks.16.conv1.bias", | |
"model.diffusion_model.input_blocks.7.0.in_layers.2.weight": "blocks.16.conv1.weight", | |
"model.diffusion_model.input_blocks.7.0.out_layers.0.bias": "blocks.16.norm2.bias", | |
"model.diffusion_model.input_blocks.7.0.out_layers.0.weight": "blocks.16.norm2.weight", | |
"model.diffusion_model.input_blocks.7.0.out_layers.3.bias": "blocks.16.conv2.bias", | |
"model.diffusion_model.input_blocks.7.0.out_layers.3.weight": "blocks.16.conv2.weight", | |
"model.diffusion_model.input_blocks.7.0.skip_connection.bias": "blocks.16.conv_shortcut.bias", | |
"model.diffusion_model.input_blocks.7.0.skip_connection.weight": "blocks.16.conv_shortcut.weight", | |
"model.diffusion_model.input_blocks.7.1.norm.bias": "blocks.17.norm.bias", | |
"model.diffusion_model.input_blocks.7.1.norm.weight": "blocks.17.norm.weight", | |
"model.diffusion_model.input_blocks.7.1.proj_in.bias": "blocks.17.proj_in.bias", | |
"model.diffusion_model.input_blocks.7.1.proj_in.weight": "blocks.17.proj_in.weight", | |
"model.diffusion_model.input_blocks.7.1.proj_out.bias": "blocks.17.proj_out.bias", | |
"model.diffusion_model.input_blocks.7.1.proj_out.weight": "blocks.17.proj_out.weight", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_k.weight": "blocks.17.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.17.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.17.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_q.weight": "blocks.17.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn1.to_v.weight": "blocks.17.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k.weight": "blocks.17.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.17.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.17.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_q.weight": "blocks.17.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v.weight": "blocks.17.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.17.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.17.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.bias": "blocks.17.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.ff.net.2.weight": "blocks.17.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.bias": "blocks.17.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm1.weight": "blocks.17.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.bias": "blocks.17.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.weight": "blocks.17.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.bias": "blocks.17.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.weight": "blocks.17.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.input_blocks.8.0.emb_layers.1.bias": "blocks.19.time_emb_proj.bias", | |
"model.diffusion_model.input_blocks.8.0.emb_layers.1.weight": "blocks.19.time_emb_proj.weight", | |
"model.diffusion_model.input_blocks.8.0.in_layers.0.bias": "blocks.19.norm1.bias", | |
"model.diffusion_model.input_blocks.8.0.in_layers.0.weight": "blocks.19.norm1.weight", | |
"model.diffusion_model.input_blocks.8.0.in_layers.2.bias": "blocks.19.conv1.bias", | |
"model.diffusion_model.input_blocks.8.0.in_layers.2.weight": "blocks.19.conv1.weight", | |
"model.diffusion_model.input_blocks.8.0.out_layers.0.bias": "blocks.19.norm2.bias", | |
"model.diffusion_model.input_blocks.8.0.out_layers.0.weight": "blocks.19.norm2.weight", | |
"model.diffusion_model.input_blocks.8.0.out_layers.3.bias": "blocks.19.conv2.bias", | |
"model.diffusion_model.input_blocks.8.0.out_layers.3.weight": "blocks.19.conv2.weight", | |
"model.diffusion_model.input_blocks.8.1.norm.bias": "blocks.20.norm.bias", | |
"model.diffusion_model.input_blocks.8.1.norm.weight": "blocks.20.norm.weight", | |
"model.diffusion_model.input_blocks.8.1.proj_in.bias": "blocks.20.proj_in.bias", | |
"model.diffusion_model.input_blocks.8.1.proj_in.weight": "blocks.20.proj_in.weight", | |
"model.diffusion_model.input_blocks.8.1.proj_out.bias": "blocks.20.proj_out.bias", | |
"model.diffusion_model.input_blocks.8.1.proj_out.weight": "blocks.20.proj_out.weight", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_k.weight": "blocks.20.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.20.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.20.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_q.weight": "blocks.20.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn1.to_v.weight": "blocks.20.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k.weight": "blocks.20.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.20.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.20.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_q.weight": "blocks.20.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v.weight": "blocks.20.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.20.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.20.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.bias": "blocks.20.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.ff.net.2.weight": "blocks.20.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.bias": "blocks.20.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm1.weight": "blocks.20.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.bias": "blocks.20.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm2.weight": "blocks.20.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.bias": "blocks.20.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.weight": "blocks.20.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.input_blocks.9.0.op.bias": "blocks.22.conv.bias", | |
"model.diffusion_model.input_blocks.9.0.op.weight": "blocks.22.conv.weight", | |
"model.diffusion_model.middle_block.0.emb_layers.1.bias": "blocks.28.time_emb_proj.bias", | |
"model.diffusion_model.middle_block.0.emb_layers.1.weight": "blocks.28.time_emb_proj.weight", | |
"model.diffusion_model.middle_block.0.in_layers.0.bias": "blocks.28.norm1.bias", | |
"model.diffusion_model.middle_block.0.in_layers.0.weight": "blocks.28.norm1.weight", | |
"model.diffusion_model.middle_block.0.in_layers.2.bias": "blocks.28.conv1.bias", | |
"model.diffusion_model.middle_block.0.in_layers.2.weight": "blocks.28.conv1.weight", | |
"model.diffusion_model.middle_block.0.out_layers.0.bias": "blocks.28.norm2.bias", | |
"model.diffusion_model.middle_block.0.out_layers.0.weight": "blocks.28.norm2.weight", | |
"model.diffusion_model.middle_block.0.out_layers.3.bias": "blocks.28.conv2.bias", | |
"model.diffusion_model.middle_block.0.out_layers.3.weight": "blocks.28.conv2.weight", | |
"model.diffusion_model.middle_block.1.norm.bias": "blocks.29.norm.bias", | |
"model.diffusion_model.middle_block.1.norm.weight": "blocks.29.norm.weight", | |
"model.diffusion_model.middle_block.1.proj_in.bias": "blocks.29.proj_in.bias", | |
"model.diffusion_model.middle_block.1.proj_in.weight": "blocks.29.proj_in.weight", | |
"model.diffusion_model.middle_block.1.proj_out.bias": "blocks.29.proj_out.bias", | |
"model.diffusion_model.middle_block.1.proj_out.weight": "blocks.29.proj_out.weight", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_k.weight": "blocks.29.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.29.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.29.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_q.weight": "blocks.29.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_v.weight": "blocks.29.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight": "blocks.29.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.29.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.29.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q.weight": "blocks.29.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight": "blocks.29.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.29.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.29.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.bias": "blocks.29.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.2.weight": "blocks.29.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.bias": "blocks.29.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm1.weight": "blocks.29.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.bias": "blocks.29.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.weight": "blocks.29.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.bias": "blocks.29.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.weight": "blocks.29.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.middle_block.2.emb_layers.1.bias": "blocks.30.time_emb_proj.bias", | |
"model.diffusion_model.middle_block.2.emb_layers.1.weight": "blocks.30.time_emb_proj.weight", | |
"model.diffusion_model.middle_block.2.in_layers.0.bias": "blocks.30.norm1.bias", | |
"model.diffusion_model.middle_block.2.in_layers.0.weight": "blocks.30.norm1.weight", | |
"model.diffusion_model.middle_block.2.in_layers.2.bias": "blocks.30.conv1.bias", | |
"model.diffusion_model.middle_block.2.in_layers.2.weight": "blocks.30.conv1.weight", | |
"model.diffusion_model.middle_block.2.out_layers.0.bias": "blocks.30.norm2.bias", | |
"model.diffusion_model.middle_block.2.out_layers.0.weight": "blocks.30.norm2.weight", | |
"model.diffusion_model.middle_block.2.out_layers.3.bias": "blocks.30.conv2.bias", | |
"model.diffusion_model.middle_block.2.out_layers.3.weight": "blocks.30.conv2.weight", | |
"model.diffusion_model.out.0.bias": "conv_norm_out.bias", | |
"model.diffusion_model.out.0.weight": "conv_norm_out.weight", | |
"model.diffusion_model.out.2.bias": "conv_out.bias", | |
"model.diffusion_model.out.2.weight": "conv_out.weight", | |
"model.diffusion_model.output_blocks.0.0.emb_layers.1.bias": "blocks.32.time_emb_proj.bias", | |
"model.diffusion_model.output_blocks.0.0.emb_layers.1.weight": "blocks.32.time_emb_proj.weight", | |
"model.diffusion_model.output_blocks.0.0.in_layers.0.bias": "blocks.32.norm1.bias", | |
"model.diffusion_model.output_blocks.0.0.in_layers.0.weight": "blocks.32.norm1.weight", | |
"model.diffusion_model.output_blocks.0.0.in_layers.2.bias": "blocks.32.conv1.bias", | |
"model.diffusion_model.output_blocks.0.0.in_layers.2.weight": "blocks.32.conv1.weight", | |
"model.diffusion_model.output_blocks.0.0.out_layers.0.bias": "blocks.32.norm2.bias", | |
"model.diffusion_model.output_blocks.0.0.out_layers.0.weight": "blocks.32.norm2.weight", | |
"model.diffusion_model.output_blocks.0.0.out_layers.3.bias": "blocks.32.conv2.bias", | |
"model.diffusion_model.output_blocks.0.0.out_layers.3.weight": "blocks.32.conv2.weight", | |
"model.diffusion_model.output_blocks.0.0.skip_connection.bias": "blocks.32.conv_shortcut.bias", | |
"model.diffusion_model.output_blocks.0.0.skip_connection.weight": "blocks.32.conv_shortcut.weight", | |
"model.diffusion_model.output_blocks.1.0.emb_layers.1.bias": "blocks.34.time_emb_proj.bias", | |
"model.diffusion_model.output_blocks.1.0.emb_layers.1.weight": "blocks.34.time_emb_proj.weight", | |
"model.diffusion_model.output_blocks.1.0.in_layers.0.bias": "blocks.34.norm1.bias", | |
"model.diffusion_model.output_blocks.1.0.in_layers.0.weight": "blocks.34.norm1.weight", | |
"model.diffusion_model.output_blocks.1.0.in_layers.2.bias": "blocks.34.conv1.bias", | |
"model.diffusion_model.output_blocks.1.0.in_layers.2.weight": "blocks.34.conv1.weight", | |
"model.diffusion_model.output_blocks.1.0.out_layers.0.bias": "blocks.34.norm2.bias", | |
"model.diffusion_model.output_blocks.1.0.out_layers.0.weight": "blocks.34.norm2.weight", | |
"model.diffusion_model.output_blocks.1.0.out_layers.3.bias": "blocks.34.conv2.bias", | |
"model.diffusion_model.output_blocks.1.0.out_layers.3.weight": "blocks.34.conv2.weight", | |
"model.diffusion_model.output_blocks.1.0.skip_connection.bias": "blocks.34.conv_shortcut.bias", | |
"model.diffusion_model.output_blocks.1.0.skip_connection.weight": "blocks.34.conv_shortcut.weight", | |
"model.diffusion_model.output_blocks.10.0.emb_layers.1.bias": "blocks.62.time_emb_proj.bias", | |
"model.diffusion_model.output_blocks.10.0.emb_layers.1.weight": "blocks.62.time_emb_proj.weight", | |
"model.diffusion_model.output_blocks.10.0.in_layers.0.bias": "blocks.62.norm1.bias", | |
"model.diffusion_model.output_blocks.10.0.in_layers.0.weight": "blocks.62.norm1.weight", | |
"model.diffusion_model.output_blocks.10.0.in_layers.2.bias": "blocks.62.conv1.bias", | |
"model.diffusion_model.output_blocks.10.0.in_layers.2.weight": "blocks.62.conv1.weight", | |
"model.diffusion_model.output_blocks.10.0.out_layers.0.bias": "blocks.62.norm2.bias", | |
"model.diffusion_model.output_blocks.10.0.out_layers.0.weight": "blocks.62.norm2.weight", | |
"model.diffusion_model.output_blocks.10.0.out_layers.3.bias": "blocks.62.conv2.bias", | |
"model.diffusion_model.output_blocks.10.0.out_layers.3.weight": "blocks.62.conv2.weight", | |
"model.diffusion_model.output_blocks.10.0.skip_connection.bias": "blocks.62.conv_shortcut.bias", | |
"model.diffusion_model.output_blocks.10.0.skip_connection.weight": "blocks.62.conv_shortcut.weight", | |
"model.diffusion_model.output_blocks.10.1.norm.bias": "blocks.63.norm.bias", | |
"model.diffusion_model.output_blocks.10.1.norm.weight": "blocks.63.norm.weight", | |
"model.diffusion_model.output_blocks.10.1.proj_in.bias": "blocks.63.proj_in.bias", | |
"model.diffusion_model.output_blocks.10.1.proj_in.weight": "blocks.63.proj_in.weight", | |
"model.diffusion_model.output_blocks.10.1.proj_out.bias": "blocks.63.proj_out.bias", | |
"model.diffusion_model.output_blocks.10.1.proj_out.weight": "blocks.63.proj_out.weight", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_k.weight": "blocks.63.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.63.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.63.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_q.weight": "blocks.63.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn1.to_v.weight": "blocks.63.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k.weight": "blocks.63.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.63.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.63.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_q.weight": "blocks.63.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v.weight": "blocks.63.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.63.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.63.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.bias": "blocks.63.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.ff.net.2.weight": "blocks.63.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.bias": "blocks.63.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm1.weight": "blocks.63.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.bias": "blocks.63.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.weight": "blocks.63.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.bias": "blocks.63.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.weight": "blocks.63.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.output_blocks.11.0.emb_layers.1.bias": "blocks.65.time_emb_proj.bias", | |
"model.diffusion_model.output_blocks.11.0.emb_layers.1.weight": "blocks.65.time_emb_proj.weight", | |
"model.diffusion_model.output_blocks.11.0.in_layers.0.bias": "blocks.65.norm1.bias", | |
"model.diffusion_model.output_blocks.11.0.in_layers.0.weight": "blocks.65.norm1.weight", | |
"model.diffusion_model.output_blocks.11.0.in_layers.2.bias": "blocks.65.conv1.bias", | |
"model.diffusion_model.output_blocks.11.0.in_layers.2.weight": "blocks.65.conv1.weight", | |
"model.diffusion_model.output_blocks.11.0.out_layers.0.bias": "blocks.65.norm2.bias", | |
"model.diffusion_model.output_blocks.11.0.out_layers.0.weight": "blocks.65.norm2.weight", | |
"model.diffusion_model.output_blocks.11.0.out_layers.3.bias": "blocks.65.conv2.bias", | |
"model.diffusion_model.output_blocks.11.0.out_layers.3.weight": "blocks.65.conv2.weight", | |
"model.diffusion_model.output_blocks.11.0.skip_connection.bias": "blocks.65.conv_shortcut.bias", | |
"model.diffusion_model.output_blocks.11.0.skip_connection.weight": "blocks.65.conv_shortcut.weight", | |
"model.diffusion_model.output_blocks.11.1.norm.bias": "blocks.66.norm.bias", | |
"model.diffusion_model.output_blocks.11.1.norm.weight": "blocks.66.norm.weight", | |
"model.diffusion_model.output_blocks.11.1.proj_in.bias": "blocks.66.proj_in.bias", | |
"model.diffusion_model.output_blocks.11.1.proj_in.weight": "blocks.66.proj_in.weight", | |
"model.diffusion_model.output_blocks.11.1.proj_out.bias": "blocks.66.proj_out.bias", | |
"model.diffusion_model.output_blocks.11.1.proj_out.weight": "blocks.66.proj_out.weight", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_k.weight": "blocks.66.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.66.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.66.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_q.weight": "blocks.66.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn1.to_v.weight": "blocks.66.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k.weight": "blocks.66.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.66.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.66.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_q.weight": "blocks.66.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v.weight": "blocks.66.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.66.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.66.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.bias": "blocks.66.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.ff.net.2.weight": "blocks.66.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.bias": "blocks.66.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm1.weight": "blocks.66.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.bias": "blocks.66.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.weight": "blocks.66.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.bias": "blocks.66.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.weight": "blocks.66.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.output_blocks.2.0.emb_layers.1.bias": "blocks.36.time_emb_proj.bias", | |
"model.diffusion_model.output_blocks.2.0.emb_layers.1.weight": "blocks.36.time_emb_proj.weight", | |
"model.diffusion_model.output_blocks.2.0.in_layers.0.bias": "blocks.36.norm1.bias", | |
"model.diffusion_model.output_blocks.2.0.in_layers.0.weight": "blocks.36.norm1.weight", | |
"model.diffusion_model.output_blocks.2.0.in_layers.2.bias": "blocks.36.conv1.bias", | |
"model.diffusion_model.output_blocks.2.0.in_layers.2.weight": "blocks.36.conv1.weight", | |
"model.diffusion_model.output_blocks.2.0.out_layers.0.bias": "blocks.36.norm2.bias", | |
"model.diffusion_model.output_blocks.2.0.out_layers.0.weight": "blocks.36.norm2.weight", | |
"model.diffusion_model.output_blocks.2.0.out_layers.3.bias": "blocks.36.conv2.bias", | |
"model.diffusion_model.output_blocks.2.0.out_layers.3.weight": "blocks.36.conv2.weight", | |
"model.diffusion_model.output_blocks.2.0.skip_connection.bias": "blocks.36.conv_shortcut.bias", | |
"model.diffusion_model.output_blocks.2.0.skip_connection.weight": "blocks.36.conv_shortcut.weight", | |
"model.diffusion_model.output_blocks.2.1.conv.bias": "blocks.37.conv.bias", | |
"model.diffusion_model.output_blocks.2.1.conv.weight": "blocks.37.conv.weight", | |
"model.diffusion_model.output_blocks.3.0.emb_layers.1.bias": "blocks.39.time_emb_proj.bias", | |
"model.diffusion_model.output_blocks.3.0.emb_layers.1.weight": "blocks.39.time_emb_proj.weight", | |
"model.diffusion_model.output_blocks.3.0.in_layers.0.bias": "blocks.39.norm1.bias", | |
"model.diffusion_model.output_blocks.3.0.in_layers.0.weight": "blocks.39.norm1.weight", | |
"model.diffusion_model.output_blocks.3.0.in_layers.2.bias": "blocks.39.conv1.bias", | |
"model.diffusion_model.output_blocks.3.0.in_layers.2.weight": "blocks.39.conv1.weight", | |
"model.diffusion_model.output_blocks.3.0.out_layers.0.bias": "blocks.39.norm2.bias", | |
"model.diffusion_model.output_blocks.3.0.out_layers.0.weight": "blocks.39.norm2.weight", | |
"model.diffusion_model.output_blocks.3.0.out_layers.3.bias": "blocks.39.conv2.bias", | |
"model.diffusion_model.output_blocks.3.0.out_layers.3.weight": "blocks.39.conv2.weight", | |
"model.diffusion_model.output_blocks.3.0.skip_connection.bias": "blocks.39.conv_shortcut.bias", | |
"model.diffusion_model.output_blocks.3.0.skip_connection.weight": "blocks.39.conv_shortcut.weight", | |
"model.diffusion_model.output_blocks.3.1.norm.bias": "blocks.40.norm.bias", | |
"model.diffusion_model.output_blocks.3.1.norm.weight": "blocks.40.norm.weight", | |
"model.diffusion_model.output_blocks.3.1.proj_in.bias": "blocks.40.proj_in.bias", | |
"model.diffusion_model.output_blocks.3.1.proj_in.weight": "blocks.40.proj_in.weight", | |
"model.diffusion_model.output_blocks.3.1.proj_out.bias": "blocks.40.proj_out.bias", | |
"model.diffusion_model.output_blocks.3.1.proj_out.weight": "blocks.40.proj_out.weight", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_k.weight": "blocks.40.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.40.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.40.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_q.weight": "blocks.40.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn1.to_v.weight": "blocks.40.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k.weight": "blocks.40.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.40.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.40.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_q.weight": "blocks.40.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v.weight": "blocks.40.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.40.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.40.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.bias": "blocks.40.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.ff.net.2.weight": "blocks.40.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.bias": "blocks.40.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm1.weight": "blocks.40.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.bias": "blocks.40.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.weight": "blocks.40.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.bias": "blocks.40.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.weight": "blocks.40.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.output_blocks.4.0.emb_layers.1.bias": "blocks.42.time_emb_proj.bias", | |
"model.diffusion_model.output_blocks.4.0.emb_layers.1.weight": "blocks.42.time_emb_proj.weight", | |
"model.diffusion_model.output_blocks.4.0.in_layers.0.bias": "blocks.42.norm1.bias", | |
"model.diffusion_model.output_blocks.4.0.in_layers.0.weight": "blocks.42.norm1.weight", | |
"model.diffusion_model.output_blocks.4.0.in_layers.2.bias": "blocks.42.conv1.bias", | |
"model.diffusion_model.output_blocks.4.0.in_layers.2.weight": "blocks.42.conv1.weight", | |
"model.diffusion_model.output_blocks.4.0.out_layers.0.bias": "blocks.42.norm2.bias", | |
"model.diffusion_model.output_blocks.4.0.out_layers.0.weight": "blocks.42.norm2.weight", | |
"model.diffusion_model.output_blocks.4.0.out_layers.3.bias": "blocks.42.conv2.bias", | |
"model.diffusion_model.output_blocks.4.0.out_layers.3.weight": "blocks.42.conv2.weight", | |
"model.diffusion_model.output_blocks.4.0.skip_connection.bias": "blocks.42.conv_shortcut.bias", | |
"model.diffusion_model.output_blocks.4.0.skip_connection.weight": "blocks.42.conv_shortcut.weight", | |
"model.diffusion_model.output_blocks.4.1.norm.bias": "blocks.43.norm.bias", | |
"model.diffusion_model.output_blocks.4.1.norm.weight": "blocks.43.norm.weight", | |
"model.diffusion_model.output_blocks.4.1.proj_in.bias": "blocks.43.proj_in.bias", | |
"model.diffusion_model.output_blocks.4.1.proj_in.weight": "blocks.43.proj_in.weight", | |
"model.diffusion_model.output_blocks.4.1.proj_out.bias": "blocks.43.proj_out.bias", | |
"model.diffusion_model.output_blocks.4.1.proj_out.weight": "blocks.43.proj_out.weight", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_k.weight": "blocks.43.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.43.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.43.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_q.weight": "blocks.43.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn1.to_v.weight": "blocks.43.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k.weight": "blocks.43.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.43.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.43.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_q.weight": "blocks.43.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v.weight": "blocks.43.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.43.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.43.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.bias": "blocks.43.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.ff.net.2.weight": "blocks.43.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.bias": "blocks.43.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm1.weight": "blocks.43.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.bias": "blocks.43.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.weight": "blocks.43.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.bias": "blocks.43.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.weight": "blocks.43.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.output_blocks.5.0.emb_layers.1.bias": "blocks.45.time_emb_proj.bias", | |
"model.diffusion_model.output_blocks.5.0.emb_layers.1.weight": "blocks.45.time_emb_proj.weight", | |
"model.diffusion_model.output_blocks.5.0.in_layers.0.bias": "blocks.45.norm1.bias", | |
"model.diffusion_model.output_blocks.5.0.in_layers.0.weight": "blocks.45.norm1.weight", | |
"model.diffusion_model.output_blocks.5.0.in_layers.2.bias": "blocks.45.conv1.bias", | |
"model.diffusion_model.output_blocks.5.0.in_layers.2.weight": "blocks.45.conv1.weight", | |
"model.diffusion_model.output_blocks.5.0.out_layers.0.bias": "blocks.45.norm2.bias", | |
"model.diffusion_model.output_blocks.5.0.out_layers.0.weight": "blocks.45.norm2.weight", | |
"model.diffusion_model.output_blocks.5.0.out_layers.3.bias": "blocks.45.conv2.bias", | |
"model.diffusion_model.output_blocks.5.0.out_layers.3.weight": "blocks.45.conv2.weight", | |
"model.diffusion_model.output_blocks.5.0.skip_connection.bias": "blocks.45.conv_shortcut.bias", | |
"model.diffusion_model.output_blocks.5.0.skip_connection.weight": "blocks.45.conv_shortcut.weight", | |
"model.diffusion_model.output_blocks.5.1.norm.bias": "blocks.46.norm.bias", | |
"model.diffusion_model.output_blocks.5.1.norm.weight": "blocks.46.norm.weight", | |
"model.diffusion_model.output_blocks.5.1.proj_in.bias": "blocks.46.proj_in.bias", | |
"model.diffusion_model.output_blocks.5.1.proj_in.weight": "blocks.46.proj_in.weight", | |
"model.diffusion_model.output_blocks.5.1.proj_out.bias": "blocks.46.proj_out.bias", | |
"model.diffusion_model.output_blocks.5.1.proj_out.weight": "blocks.46.proj_out.weight", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_k.weight": "blocks.46.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.46.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.46.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_q.weight": "blocks.46.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn1.to_v.weight": "blocks.46.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k.weight": "blocks.46.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.46.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.46.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_q.weight": "blocks.46.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v.weight": "blocks.46.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.46.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.46.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.bias": "blocks.46.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.ff.net.2.weight": "blocks.46.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.bias": "blocks.46.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm1.weight": "blocks.46.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.bias": "blocks.46.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm2.weight": "blocks.46.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.bias": "blocks.46.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.weight": "blocks.46.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.output_blocks.5.2.conv.bias": "blocks.47.conv.bias", | |
"model.diffusion_model.output_blocks.5.2.conv.weight": "blocks.47.conv.weight", | |
"model.diffusion_model.output_blocks.6.0.emb_layers.1.bias": "blocks.49.time_emb_proj.bias", | |
"model.diffusion_model.output_blocks.6.0.emb_layers.1.weight": "blocks.49.time_emb_proj.weight", | |
"model.diffusion_model.output_blocks.6.0.in_layers.0.bias": "blocks.49.norm1.bias", | |
"model.diffusion_model.output_blocks.6.0.in_layers.0.weight": "blocks.49.norm1.weight", | |
"model.diffusion_model.output_blocks.6.0.in_layers.2.bias": "blocks.49.conv1.bias", | |
"model.diffusion_model.output_blocks.6.0.in_layers.2.weight": "blocks.49.conv1.weight", | |
"model.diffusion_model.output_blocks.6.0.out_layers.0.bias": "blocks.49.norm2.bias", | |
"model.diffusion_model.output_blocks.6.0.out_layers.0.weight": "blocks.49.norm2.weight", | |
"model.diffusion_model.output_blocks.6.0.out_layers.3.bias": "blocks.49.conv2.bias", | |
"model.diffusion_model.output_blocks.6.0.out_layers.3.weight": "blocks.49.conv2.weight", | |
"model.diffusion_model.output_blocks.6.0.skip_connection.bias": "blocks.49.conv_shortcut.bias", | |
"model.diffusion_model.output_blocks.6.0.skip_connection.weight": "blocks.49.conv_shortcut.weight", | |
"model.diffusion_model.output_blocks.6.1.norm.bias": "blocks.50.norm.bias", | |
"model.diffusion_model.output_blocks.6.1.norm.weight": "blocks.50.norm.weight", | |
"model.diffusion_model.output_blocks.6.1.proj_in.bias": "blocks.50.proj_in.bias", | |
"model.diffusion_model.output_blocks.6.1.proj_in.weight": "blocks.50.proj_in.weight", | |
"model.diffusion_model.output_blocks.6.1.proj_out.bias": "blocks.50.proj_out.bias", | |
"model.diffusion_model.output_blocks.6.1.proj_out.weight": "blocks.50.proj_out.weight", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_k.weight": "blocks.50.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.50.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.50.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_q.weight": "blocks.50.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn1.to_v.weight": "blocks.50.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k.weight": "blocks.50.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.50.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.50.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_q.weight": "blocks.50.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v.weight": "blocks.50.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.50.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.50.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.bias": "blocks.50.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.ff.net.2.weight": "blocks.50.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.bias": "blocks.50.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm1.weight": "blocks.50.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.bias": "blocks.50.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.weight": "blocks.50.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.bias": "blocks.50.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.weight": "blocks.50.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.output_blocks.7.0.emb_layers.1.bias": "blocks.52.time_emb_proj.bias", | |
"model.diffusion_model.output_blocks.7.0.emb_layers.1.weight": "blocks.52.time_emb_proj.weight", | |
"model.diffusion_model.output_blocks.7.0.in_layers.0.bias": "blocks.52.norm1.bias", | |
"model.diffusion_model.output_blocks.7.0.in_layers.0.weight": "blocks.52.norm1.weight", | |
"model.diffusion_model.output_blocks.7.0.in_layers.2.bias": "blocks.52.conv1.bias", | |
"model.diffusion_model.output_blocks.7.0.in_layers.2.weight": "blocks.52.conv1.weight", | |
"model.diffusion_model.output_blocks.7.0.out_layers.0.bias": "blocks.52.norm2.bias", | |
"model.diffusion_model.output_blocks.7.0.out_layers.0.weight": "blocks.52.norm2.weight", | |
"model.diffusion_model.output_blocks.7.0.out_layers.3.bias": "blocks.52.conv2.bias", | |
"model.diffusion_model.output_blocks.7.0.out_layers.3.weight": "blocks.52.conv2.weight", | |
"model.diffusion_model.output_blocks.7.0.skip_connection.bias": "blocks.52.conv_shortcut.bias", | |
"model.diffusion_model.output_blocks.7.0.skip_connection.weight": "blocks.52.conv_shortcut.weight", | |
"model.diffusion_model.output_blocks.7.1.norm.bias": "blocks.53.norm.bias", | |
"model.diffusion_model.output_blocks.7.1.norm.weight": "blocks.53.norm.weight", | |
"model.diffusion_model.output_blocks.7.1.proj_in.bias": "blocks.53.proj_in.bias", | |
"model.diffusion_model.output_blocks.7.1.proj_in.weight": "blocks.53.proj_in.weight", | |
"model.diffusion_model.output_blocks.7.1.proj_out.bias": "blocks.53.proj_out.bias", | |
"model.diffusion_model.output_blocks.7.1.proj_out.weight": "blocks.53.proj_out.weight", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_k.weight": "blocks.53.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.53.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.53.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_q.weight": "blocks.53.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn1.to_v.weight": "blocks.53.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k.weight": "blocks.53.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.53.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.53.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_q.weight": "blocks.53.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v.weight": "blocks.53.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.53.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.53.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.bias": "blocks.53.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.ff.net.2.weight": "blocks.53.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.bias": "blocks.53.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm1.weight": "blocks.53.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.bias": "blocks.53.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.weight": "blocks.53.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.bias": "blocks.53.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.weight": "blocks.53.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.output_blocks.8.0.emb_layers.1.bias": "blocks.55.time_emb_proj.bias", | |
"model.diffusion_model.output_blocks.8.0.emb_layers.1.weight": "blocks.55.time_emb_proj.weight", | |
"model.diffusion_model.output_blocks.8.0.in_layers.0.bias": "blocks.55.norm1.bias", | |
"model.diffusion_model.output_blocks.8.0.in_layers.0.weight": "blocks.55.norm1.weight", | |
"model.diffusion_model.output_blocks.8.0.in_layers.2.bias": "blocks.55.conv1.bias", | |
"model.diffusion_model.output_blocks.8.0.in_layers.2.weight": "blocks.55.conv1.weight", | |
"model.diffusion_model.output_blocks.8.0.out_layers.0.bias": "blocks.55.norm2.bias", | |
"model.diffusion_model.output_blocks.8.0.out_layers.0.weight": "blocks.55.norm2.weight", | |
"model.diffusion_model.output_blocks.8.0.out_layers.3.bias": "blocks.55.conv2.bias", | |
"model.diffusion_model.output_blocks.8.0.out_layers.3.weight": "blocks.55.conv2.weight", | |
"model.diffusion_model.output_blocks.8.0.skip_connection.bias": "blocks.55.conv_shortcut.bias", | |
"model.diffusion_model.output_blocks.8.0.skip_connection.weight": "blocks.55.conv_shortcut.weight", | |
"model.diffusion_model.output_blocks.8.1.norm.bias": "blocks.56.norm.bias", | |
"model.diffusion_model.output_blocks.8.1.norm.weight": "blocks.56.norm.weight", | |
"model.diffusion_model.output_blocks.8.1.proj_in.bias": "blocks.56.proj_in.bias", | |
"model.diffusion_model.output_blocks.8.1.proj_in.weight": "blocks.56.proj_in.weight", | |
"model.diffusion_model.output_blocks.8.1.proj_out.bias": "blocks.56.proj_out.bias", | |
"model.diffusion_model.output_blocks.8.1.proj_out.weight": "blocks.56.proj_out.weight", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_k.weight": "blocks.56.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.56.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.56.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_q.weight": "blocks.56.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn1.to_v.weight": "blocks.56.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k.weight": "blocks.56.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.56.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.56.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_q.weight": "blocks.56.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v.weight": "blocks.56.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.56.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.56.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.bias": "blocks.56.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.ff.net.2.weight": "blocks.56.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.bias": "blocks.56.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm1.weight": "blocks.56.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.bias": "blocks.56.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm2.weight": "blocks.56.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.bias": "blocks.56.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.weight": "blocks.56.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.output_blocks.8.2.conv.bias": "blocks.57.conv.bias", | |
"model.diffusion_model.output_blocks.8.2.conv.weight": "blocks.57.conv.weight", | |
"model.diffusion_model.output_blocks.9.0.emb_layers.1.bias": "blocks.59.time_emb_proj.bias", | |
"model.diffusion_model.output_blocks.9.0.emb_layers.1.weight": "blocks.59.time_emb_proj.weight", | |
"model.diffusion_model.output_blocks.9.0.in_layers.0.bias": "blocks.59.norm1.bias", | |
"model.diffusion_model.output_blocks.9.0.in_layers.0.weight": "blocks.59.norm1.weight", | |
"model.diffusion_model.output_blocks.9.0.in_layers.2.bias": "blocks.59.conv1.bias", | |
"model.diffusion_model.output_blocks.9.0.in_layers.2.weight": "blocks.59.conv1.weight", | |
"model.diffusion_model.output_blocks.9.0.out_layers.0.bias": "blocks.59.norm2.bias", | |
"model.diffusion_model.output_blocks.9.0.out_layers.0.weight": "blocks.59.norm2.weight", | |
"model.diffusion_model.output_blocks.9.0.out_layers.3.bias": "blocks.59.conv2.bias", | |
"model.diffusion_model.output_blocks.9.0.out_layers.3.weight": "blocks.59.conv2.weight", | |
"model.diffusion_model.output_blocks.9.0.skip_connection.bias": "blocks.59.conv_shortcut.bias", | |
"model.diffusion_model.output_blocks.9.0.skip_connection.weight": "blocks.59.conv_shortcut.weight", | |
"model.diffusion_model.output_blocks.9.1.norm.bias": "blocks.60.norm.bias", | |
"model.diffusion_model.output_blocks.9.1.norm.weight": "blocks.60.norm.weight", | |
"model.diffusion_model.output_blocks.9.1.proj_in.bias": "blocks.60.proj_in.bias", | |
"model.diffusion_model.output_blocks.9.1.proj_in.weight": "blocks.60.proj_in.weight", | |
"model.diffusion_model.output_blocks.9.1.proj_out.bias": "blocks.60.proj_out.bias", | |
"model.diffusion_model.output_blocks.9.1.proj_out.weight": "blocks.60.proj_out.weight", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_k.weight": "blocks.60.transformer_blocks.0.attn1.to_k.weight", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0.bias": "blocks.60.transformer_blocks.0.attn1.to_out.bias", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_out.0.weight": "blocks.60.transformer_blocks.0.attn1.to_out.weight", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_q.weight": "blocks.60.transformer_blocks.0.attn1.to_q.weight", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn1.to_v.weight": "blocks.60.transformer_blocks.0.attn1.to_v.weight", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k.weight": "blocks.60.transformer_blocks.0.attn2.to_k.weight", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.bias": "blocks.60.transformer_blocks.0.attn2.to_out.bias", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_out.0.weight": "blocks.60.transformer_blocks.0.attn2.to_out.weight", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_q.weight": "blocks.60.transformer_blocks.0.attn2.to_q.weight", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v.weight": "blocks.60.transformer_blocks.0.attn2.to_v.weight", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.bias": "blocks.60.transformer_blocks.0.act_fn.proj.bias", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.0.proj.weight": "blocks.60.transformer_blocks.0.act_fn.proj.weight", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.bias": "blocks.60.transformer_blocks.0.ff.bias", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.ff.net.2.weight": "blocks.60.transformer_blocks.0.ff.weight", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.bias": "blocks.60.transformer_blocks.0.norm1.bias", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm1.weight": "blocks.60.transformer_blocks.0.norm1.weight", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.bias": "blocks.60.transformer_blocks.0.norm2.bias", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm2.weight": "blocks.60.transformer_blocks.0.norm2.weight", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.bias": "blocks.60.transformer_blocks.0.norm3.bias", | |
"model.diffusion_model.output_blocks.9.1.transformer_blocks.0.norm3.weight": "blocks.60.transformer_blocks.0.norm3.weight", | |
"model.diffusion_model.time_embed.0.bias": "time_embedding.0.bias", | |
"model.diffusion_model.time_embed.0.weight": "time_embedding.0.weight", | |
"model.diffusion_model.time_embed.2.bias": "time_embedding.2.bias", | |
"model.diffusion_model.time_embed.2.weight": "time_embedding.2.weight", | |
} | |
state_dict_ = {} | |
for name in state_dict: | |
if name in rename_dict: | |
param = state_dict[name] | |
if ".proj_in." in name or ".proj_out." in name: | |
param = param.squeeze() | |
state_dict_[rename_dict[name]] = param | |
return state_dict_ |