Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from .attention import Attention | |
from .sd_unet import ResnetBlock, UpSampler | |
from .tiler import TileWorker | |
class VAEAttentionBlock(torch.nn.Module): | |
def __init__(self, num_attention_heads, attention_head_dim, in_channels, num_layers=1, norm_num_groups=32, eps=1e-5): | |
super().__init__() | |
inner_dim = num_attention_heads * attention_head_dim | |
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=eps, affine=True) | |
self.transformer_blocks = torch.nn.ModuleList([ | |
Attention( | |
inner_dim, | |
num_attention_heads, | |
attention_head_dim, | |
bias_q=True, | |
bias_kv=True, | |
bias_out=True | |
) | |
for d in range(num_layers) | |
]) | |
def forward(self, hidden_states, time_emb, text_emb, res_stack): | |
batch, _, height, width = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) | |
for block in self.transformer_blocks: | |
hidden_states = block(hidden_states) | |
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() | |
hidden_states = hidden_states + residual | |
return hidden_states, time_emb, text_emb, res_stack | |
class SDVAEDecoder(torch.nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.scaling_factor = 0.18215 | |
self.post_quant_conv = torch.nn.Conv2d(4, 4, kernel_size=1) | |
self.conv_in = torch.nn.Conv2d(4, 512, kernel_size=3, padding=1) | |
self.blocks = torch.nn.ModuleList([ | |
# UNetMidBlock2D | |
ResnetBlock(512, 512, eps=1e-6), | |
VAEAttentionBlock(1, 512, 512, 1, eps=1e-6), | |
ResnetBlock(512, 512, eps=1e-6), | |
# UpDecoderBlock2D | |
ResnetBlock(512, 512, eps=1e-6), | |
ResnetBlock(512, 512, eps=1e-6), | |
ResnetBlock(512, 512, eps=1e-6), | |
UpSampler(512), | |
# UpDecoderBlock2D | |
ResnetBlock(512, 512, eps=1e-6), | |
ResnetBlock(512, 512, eps=1e-6), | |
ResnetBlock(512, 512, eps=1e-6), | |
UpSampler(512), | |
# UpDecoderBlock2D | |
ResnetBlock(512, 256, eps=1e-6), | |
ResnetBlock(256, 256, eps=1e-6), | |
ResnetBlock(256, 256, eps=1e-6), | |
UpSampler(256), | |
# UpDecoderBlock2D | |
ResnetBlock(256, 128, eps=1e-6), | |
ResnetBlock(128, 128, eps=1e-6), | |
ResnetBlock(128, 128, eps=1e-6), | |
]) | |
self.conv_norm_out = torch.nn.GroupNorm(num_channels=128, num_groups=32, eps=1e-5) | |
self.conv_act = torch.nn.SiLU() | |
self.conv_out = torch.nn.Conv2d(128, 3, kernel_size=3, padding=1) | |
def tiled_forward(self, sample, tile_size=64, tile_stride=32): | |
hidden_states = TileWorker().tiled_forward( | |
lambda x: self.forward(x), | |
sample, | |
tile_size, | |
tile_stride, | |
tile_device=sample.device, | |
tile_dtype=sample.dtype | |
) | |
return hidden_states | |
def forward(self, sample, tiled=False, tile_size=64, tile_stride=32, **kwargs): | |
original_dtype = sample.dtype | |
sample = sample.to(dtype=next(iter(self.parameters())).dtype) | |
# For VAE Decoder, we do not need to apply the tiler on each layer. | |
if tiled: | |
return self.tiled_forward(sample, tile_size=tile_size, tile_stride=tile_stride) | |
# 1. pre-process | |
sample = sample / self.scaling_factor | |
hidden_states = self.post_quant_conv(sample) | |
hidden_states = self.conv_in(hidden_states) | |
time_emb = None | |
text_emb = None | |
res_stack = None | |
# 2. blocks | |
for i, block in enumerate(self.blocks): | |
hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack) | |
# 3. output | |
hidden_states = self.conv_norm_out(hidden_states) | |
hidden_states = self.conv_act(hidden_states) | |
hidden_states = self.conv_out(hidden_states) | |
hidden_states = hidden_states.to(original_dtype) | |
return hidden_states | |
def state_dict_converter(): | |
return SDVAEDecoderStateDictConverter() | |
class SDVAEDecoderStateDictConverter: | |
def __init__(self): | |
pass | |
def from_diffusers(self, state_dict): | |
# architecture | |
block_types = [ | |
'ResnetBlock', 'VAEAttentionBlock', 'ResnetBlock', | |
'ResnetBlock', 'ResnetBlock', 'ResnetBlock', 'UpSampler', | |
'ResnetBlock', 'ResnetBlock', 'ResnetBlock', 'UpSampler', | |
'ResnetBlock', 'ResnetBlock', 'ResnetBlock', 'UpSampler', | |
'ResnetBlock', 'ResnetBlock', 'ResnetBlock' | |
] | |
# Rename each parameter | |
local_rename_dict = { | |
"post_quant_conv": "post_quant_conv", | |
"decoder.conv_in": "conv_in", | |
"decoder.mid_block.attentions.0.group_norm": "blocks.1.norm", | |
"decoder.mid_block.attentions.0.to_q": "blocks.1.transformer_blocks.0.to_q", | |
"decoder.mid_block.attentions.0.to_k": "blocks.1.transformer_blocks.0.to_k", | |
"decoder.mid_block.attentions.0.to_v": "blocks.1.transformer_blocks.0.to_v", | |
"decoder.mid_block.attentions.0.to_out.0": "blocks.1.transformer_blocks.0.to_out", | |
"decoder.mid_block.resnets.0.norm1": "blocks.0.norm1", | |
"decoder.mid_block.resnets.0.conv1": "blocks.0.conv1", | |
"decoder.mid_block.resnets.0.norm2": "blocks.0.norm2", | |
"decoder.mid_block.resnets.0.conv2": "blocks.0.conv2", | |
"decoder.mid_block.resnets.1.norm1": "blocks.2.norm1", | |
"decoder.mid_block.resnets.1.conv1": "blocks.2.conv1", | |
"decoder.mid_block.resnets.1.norm2": "blocks.2.norm2", | |
"decoder.mid_block.resnets.1.conv2": "blocks.2.conv2", | |
"decoder.conv_norm_out": "conv_norm_out", | |
"decoder.conv_out": "conv_out", | |
} | |
name_list = sorted([name for name in state_dict]) | |
rename_dict = {} | |
block_id = {"ResnetBlock": 2, "DownSampler": 2, "UpSampler": 2} | |
last_block_type_with_id = {"ResnetBlock": "", "DownSampler": "", "UpSampler": ""} | |
for name in name_list: | |
names = name.split(".") | |
name_prefix = ".".join(names[:-1]) | |
if name_prefix in local_rename_dict: | |
rename_dict[name] = local_rename_dict[name_prefix] + "." + names[-1] | |
elif name.startswith("decoder.up_blocks"): | |
block_type = {"resnets": "ResnetBlock", "downsamplers": "DownSampler", "upsamplers": "UpSampler"}[names[3]] | |
block_type_with_id = ".".join(names[:5]) | |
if block_type_with_id != last_block_type_with_id[block_type]: | |
block_id[block_type] += 1 | |
last_block_type_with_id[block_type] = block_type_with_id | |
while block_id[block_type] < len(block_types) and block_types[block_id[block_type]] != block_type: | |
block_id[block_type] += 1 | |
block_type_with_id = ".".join(names[:5]) | |
names = ["blocks", str(block_id[block_type])] + names[5:] | |
rename_dict[name] = ".".join(names) | |
# Convert state_dict | |
state_dict_ = {} | |
for name, param in state_dict.items(): | |
if name in rename_dict: | |
state_dict_[rename_dict[name]] = param | |
return state_dict_ | |
def from_civitai(self, state_dict): | |
rename_dict = { | |
"first_stage_model.decoder.conv_in.bias": "conv_in.bias", | |
"first_stage_model.decoder.conv_in.weight": "conv_in.weight", | |
"first_stage_model.decoder.conv_out.bias": "conv_out.bias", | |
"first_stage_model.decoder.conv_out.weight": "conv_out.weight", | |
"first_stage_model.decoder.mid.attn_1.k.bias": "blocks.1.transformer_blocks.0.to_k.bias", | |
"first_stage_model.decoder.mid.attn_1.k.weight": "blocks.1.transformer_blocks.0.to_k.weight", | |
"first_stage_model.decoder.mid.attn_1.norm.bias": "blocks.1.norm.bias", | |
"first_stage_model.decoder.mid.attn_1.norm.weight": "blocks.1.norm.weight", | |
"first_stage_model.decoder.mid.attn_1.proj_out.bias": "blocks.1.transformer_blocks.0.to_out.bias", | |
"first_stage_model.decoder.mid.attn_1.proj_out.weight": "blocks.1.transformer_blocks.0.to_out.weight", | |
"first_stage_model.decoder.mid.attn_1.q.bias": "blocks.1.transformer_blocks.0.to_q.bias", | |
"first_stage_model.decoder.mid.attn_1.q.weight": "blocks.1.transformer_blocks.0.to_q.weight", | |
"first_stage_model.decoder.mid.attn_1.v.bias": "blocks.1.transformer_blocks.0.to_v.bias", | |
"first_stage_model.decoder.mid.attn_1.v.weight": "blocks.1.transformer_blocks.0.to_v.weight", | |
"first_stage_model.decoder.mid.block_1.conv1.bias": "blocks.0.conv1.bias", | |
"first_stage_model.decoder.mid.block_1.conv1.weight": "blocks.0.conv1.weight", | |
"first_stage_model.decoder.mid.block_1.conv2.bias": "blocks.0.conv2.bias", | |
"first_stage_model.decoder.mid.block_1.conv2.weight": "blocks.0.conv2.weight", | |
"first_stage_model.decoder.mid.block_1.norm1.bias": "blocks.0.norm1.bias", | |
"first_stage_model.decoder.mid.block_1.norm1.weight": "blocks.0.norm1.weight", | |
"first_stage_model.decoder.mid.block_1.norm2.bias": "blocks.0.norm2.bias", | |
"first_stage_model.decoder.mid.block_1.norm2.weight": "blocks.0.norm2.weight", | |
"first_stage_model.decoder.mid.block_2.conv1.bias": "blocks.2.conv1.bias", | |
"first_stage_model.decoder.mid.block_2.conv1.weight": "blocks.2.conv1.weight", | |
"first_stage_model.decoder.mid.block_2.conv2.bias": "blocks.2.conv2.bias", | |
"first_stage_model.decoder.mid.block_2.conv2.weight": "blocks.2.conv2.weight", | |
"first_stage_model.decoder.mid.block_2.norm1.bias": "blocks.2.norm1.bias", | |
"first_stage_model.decoder.mid.block_2.norm1.weight": "blocks.2.norm1.weight", | |
"first_stage_model.decoder.mid.block_2.norm2.bias": "blocks.2.norm2.bias", | |
"first_stage_model.decoder.mid.block_2.norm2.weight": "blocks.2.norm2.weight", | |
"first_stage_model.decoder.norm_out.bias": "conv_norm_out.bias", | |
"first_stage_model.decoder.norm_out.weight": "conv_norm_out.weight", | |
"first_stage_model.decoder.up.0.block.0.conv1.bias": "blocks.15.conv1.bias", | |
"first_stage_model.decoder.up.0.block.0.conv1.weight": "blocks.15.conv1.weight", | |
"first_stage_model.decoder.up.0.block.0.conv2.bias": "blocks.15.conv2.bias", | |
"first_stage_model.decoder.up.0.block.0.conv2.weight": "blocks.15.conv2.weight", | |
"first_stage_model.decoder.up.0.block.0.nin_shortcut.bias": "blocks.15.conv_shortcut.bias", | |
"first_stage_model.decoder.up.0.block.0.nin_shortcut.weight": "blocks.15.conv_shortcut.weight", | |
"first_stage_model.decoder.up.0.block.0.norm1.bias": "blocks.15.norm1.bias", | |
"first_stage_model.decoder.up.0.block.0.norm1.weight": "blocks.15.norm1.weight", | |
"first_stage_model.decoder.up.0.block.0.norm2.bias": "blocks.15.norm2.bias", | |
"first_stage_model.decoder.up.0.block.0.norm2.weight": "blocks.15.norm2.weight", | |
"first_stage_model.decoder.up.0.block.1.conv1.bias": "blocks.16.conv1.bias", | |
"first_stage_model.decoder.up.0.block.1.conv1.weight": "blocks.16.conv1.weight", | |
"first_stage_model.decoder.up.0.block.1.conv2.bias": "blocks.16.conv2.bias", | |
"first_stage_model.decoder.up.0.block.1.conv2.weight": "blocks.16.conv2.weight", | |
"first_stage_model.decoder.up.0.block.1.norm1.bias": "blocks.16.norm1.bias", | |
"first_stage_model.decoder.up.0.block.1.norm1.weight": "blocks.16.norm1.weight", | |
"first_stage_model.decoder.up.0.block.1.norm2.bias": "blocks.16.norm2.bias", | |
"first_stage_model.decoder.up.0.block.1.norm2.weight": "blocks.16.norm2.weight", | |
"first_stage_model.decoder.up.0.block.2.conv1.bias": "blocks.17.conv1.bias", | |
"first_stage_model.decoder.up.0.block.2.conv1.weight": "blocks.17.conv1.weight", | |
"first_stage_model.decoder.up.0.block.2.conv2.bias": "blocks.17.conv2.bias", | |
"first_stage_model.decoder.up.0.block.2.conv2.weight": "blocks.17.conv2.weight", | |
"first_stage_model.decoder.up.0.block.2.norm1.bias": "blocks.17.norm1.bias", | |
"first_stage_model.decoder.up.0.block.2.norm1.weight": "blocks.17.norm1.weight", | |
"first_stage_model.decoder.up.0.block.2.norm2.bias": "blocks.17.norm2.bias", | |
"first_stage_model.decoder.up.0.block.2.norm2.weight": "blocks.17.norm2.weight", | |
"first_stage_model.decoder.up.1.block.0.conv1.bias": "blocks.11.conv1.bias", | |
"first_stage_model.decoder.up.1.block.0.conv1.weight": "blocks.11.conv1.weight", | |
"first_stage_model.decoder.up.1.block.0.conv2.bias": "blocks.11.conv2.bias", | |
"first_stage_model.decoder.up.1.block.0.conv2.weight": "blocks.11.conv2.weight", | |
"first_stage_model.decoder.up.1.block.0.nin_shortcut.bias": "blocks.11.conv_shortcut.bias", | |
"first_stage_model.decoder.up.1.block.0.nin_shortcut.weight": "blocks.11.conv_shortcut.weight", | |
"first_stage_model.decoder.up.1.block.0.norm1.bias": "blocks.11.norm1.bias", | |
"first_stage_model.decoder.up.1.block.0.norm1.weight": "blocks.11.norm1.weight", | |
"first_stage_model.decoder.up.1.block.0.norm2.bias": "blocks.11.norm2.bias", | |
"first_stage_model.decoder.up.1.block.0.norm2.weight": "blocks.11.norm2.weight", | |
"first_stage_model.decoder.up.1.block.1.conv1.bias": "blocks.12.conv1.bias", | |
"first_stage_model.decoder.up.1.block.1.conv1.weight": "blocks.12.conv1.weight", | |
"first_stage_model.decoder.up.1.block.1.conv2.bias": "blocks.12.conv2.bias", | |
"first_stage_model.decoder.up.1.block.1.conv2.weight": "blocks.12.conv2.weight", | |
"first_stage_model.decoder.up.1.block.1.norm1.bias": "blocks.12.norm1.bias", | |
"first_stage_model.decoder.up.1.block.1.norm1.weight": "blocks.12.norm1.weight", | |
"first_stage_model.decoder.up.1.block.1.norm2.bias": "blocks.12.norm2.bias", | |
"first_stage_model.decoder.up.1.block.1.norm2.weight": "blocks.12.norm2.weight", | |
"first_stage_model.decoder.up.1.block.2.conv1.bias": "blocks.13.conv1.bias", | |
"first_stage_model.decoder.up.1.block.2.conv1.weight": "blocks.13.conv1.weight", | |
"first_stage_model.decoder.up.1.block.2.conv2.bias": "blocks.13.conv2.bias", | |
"first_stage_model.decoder.up.1.block.2.conv2.weight": "blocks.13.conv2.weight", | |
"first_stage_model.decoder.up.1.block.2.norm1.bias": "blocks.13.norm1.bias", | |
"first_stage_model.decoder.up.1.block.2.norm1.weight": "blocks.13.norm1.weight", | |
"first_stage_model.decoder.up.1.block.2.norm2.bias": "blocks.13.norm2.bias", | |
"first_stage_model.decoder.up.1.block.2.norm2.weight": "blocks.13.norm2.weight", | |
"first_stage_model.decoder.up.1.upsample.conv.bias": "blocks.14.conv.bias", | |
"first_stage_model.decoder.up.1.upsample.conv.weight": "blocks.14.conv.weight", | |
"first_stage_model.decoder.up.2.block.0.conv1.bias": "blocks.7.conv1.bias", | |
"first_stage_model.decoder.up.2.block.0.conv1.weight": "blocks.7.conv1.weight", | |
"first_stage_model.decoder.up.2.block.0.conv2.bias": "blocks.7.conv2.bias", | |
"first_stage_model.decoder.up.2.block.0.conv2.weight": "blocks.7.conv2.weight", | |
"first_stage_model.decoder.up.2.block.0.norm1.bias": "blocks.7.norm1.bias", | |
"first_stage_model.decoder.up.2.block.0.norm1.weight": "blocks.7.norm1.weight", | |
"first_stage_model.decoder.up.2.block.0.norm2.bias": "blocks.7.norm2.bias", | |
"first_stage_model.decoder.up.2.block.0.norm2.weight": "blocks.7.norm2.weight", | |
"first_stage_model.decoder.up.2.block.1.conv1.bias": "blocks.8.conv1.bias", | |
"first_stage_model.decoder.up.2.block.1.conv1.weight": "blocks.8.conv1.weight", | |
"first_stage_model.decoder.up.2.block.1.conv2.bias": "blocks.8.conv2.bias", | |
"first_stage_model.decoder.up.2.block.1.conv2.weight": "blocks.8.conv2.weight", | |
"first_stage_model.decoder.up.2.block.1.norm1.bias": "blocks.8.norm1.bias", | |
"first_stage_model.decoder.up.2.block.1.norm1.weight": "blocks.8.norm1.weight", | |
"first_stage_model.decoder.up.2.block.1.norm2.bias": "blocks.8.norm2.bias", | |
"first_stage_model.decoder.up.2.block.1.norm2.weight": "blocks.8.norm2.weight", | |
"first_stage_model.decoder.up.2.block.2.conv1.bias": "blocks.9.conv1.bias", | |
"first_stage_model.decoder.up.2.block.2.conv1.weight": "blocks.9.conv1.weight", | |
"first_stage_model.decoder.up.2.block.2.conv2.bias": "blocks.9.conv2.bias", | |
"first_stage_model.decoder.up.2.block.2.conv2.weight": "blocks.9.conv2.weight", | |
"first_stage_model.decoder.up.2.block.2.norm1.bias": "blocks.9.norm1.bias", | |
"first_stage_model.decoder.up.2.block.2.norm1.weight": "blocks.9.norm1.weight", | |
"first_stage_model.decoder.up.2.block.2.norm2.bias": "blocks.9.norm2.bias", | |
"first_stage_model.decoder.up.2.block.2.norm2.weight": "blocks.9.norm2.weight", | |
"first_stage_model.decoder.up.2.upsample.conv.bias": "blocks.10.conv.bias", | |
"first_stage_model.decoder.up.2.upsample.conv.weight": "blocks.10.conv.weight", | |
"first_stage_model.decoder.up.3.block.0.conv1.bias": "blocks.3.conv1.bias", | |
"first_stage_model.decoder.up.3.block.0.conv1.weight": "blocks.3.conv1.weight", | |
"first_stage_model.decoder.up.3.block.0.conv2.bias": "blocks.3.conv2.bias", | |
"first_stage_model.decoder.up.3.block.0.conv2.weight": "blocks.3.conv2.weight", | |
"first_stage_model.decoder.up.3.block.0.norm1.bias": "blocks.3.norm1.bias", | |
"first_stage_model.decoder.up.3.block.0.norm1.weight": "blocks.3.norm1.weight", | |
"first_stage_model.decoder.up.3.block.0.norm2.bias": "blocks.3.norm2.bias", | |
"first_stage_model.decoder.up.3.block.0.norm2.weight": "blocks.3.norm2.weight", | |
"first_stage_model.decoder.up.3.block.1.conv1.bias": "blocks.4.conv1.bias", | |
"first_stage_model.decoder.up.3.block.1.conv1.weight": "blocks.4.conv1.weight", | |
"first_stage_model.decoder.up.3.block.1.conv2.bias": "blocks.4.conv2.bias", | |
"first_stage_model.decoder.up.3.block.1.conv2.weight": "blocks.4.conv2.weight", | |
"first_stage_model.decoder.up.3.block.1.norm1.bias": "blocks.4.norm1.bias", | |
"first_stage_model.decoder.up.3.block.1.norm1.weight": "blocks.4.norm1.weight", | |
"first_stage_model.decoder.up.3.block.1.norm2.bias": "blocks.4.norm2.bias", | |
"first_stage_model.decoder.up.3.block.1.norm2.weight": "blocks.4.norm2.weight", | |
"first_stage_model.decoder.up.3.block.2.conv1.bias": "blocks.5.conv1.bias", | |
"first_stage_model.decoder.up.3.block.2.conv1.weight": "blocks.5.conv1.weight", | |
"first_stage_model.decoder.up.3.block.2.conv2.bias": "blocks.5.conv2.bias", | |
"first_stage_model.decoder.up.3.block.2.conv2.weight": "blocks.5.conv2.weight", | |
"first_stage_model.decoder.up.3.block.2.norm1.bias": "blocks.5.norm1.bias", | |
"first_stage_model.decoder.up.3.block.2.norm1.weight": "blocks.5.norm1.weight", | |
"first_stage_model.decoder.up.3.block.2.norm2.bias": "blocks.5.norm2.bias", | |
"first_stage_model.decoder.up.3.block.2.norm2.weight": "blocks.5.norm2.weight", | |
"first_stage_model.decoder.up.3.upsample.conv.bias": "blocks.6.conv.bias", | |
"first_stage_model.decoder.up.3.upsample.conv.weight": "blocks.6.conv.weight", | |
"first_stage_model.post_quant_conv.bias": "post_quant_conv.bias", | |
"first_stage_model.post_quant_conv.weight": "post_quant_conv.weight", | |
} | |
state_dict_ = {} | |
for name in state_dict: | |
if name in rename_dict: | |
param = state_dict[name] | |
if "transformer_blocks" in rename_dict[name]: | |
param = param.squeeze() | |
state_dict_[rename_dict[name]] = param | |
return state_dict_ | |