wenmengzhou's picture
add code and adapt to zero gpus
703e263 verified
raw
history blame
7.72 kB
from ..models import SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDIpAdapter, IpAdapterCLIPImageEmbedder
from ..models.model_manager import ModelManager
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator
from ..prompters import SDPrompter
from ..schedulers import EnhancedDDIMScheduler
from .base import BasePipeline
from .dancer import lets_dance
from typing import List
import torch
from tqdm import tqdm
class SDImagePipeline(BasePipeline):
def __init__(self, device="cuda", torch_dtype=torch.float16):
super().__init__(device=device, torch_dtype=torch_dtype)
self.scheduler = EnhancedDDIMScheduler()
self.prompter = SDPrompter()
# models
self.text_encoder: SDTextEncoder = None
self.unet: SDUNet = None
self.vae_decoder: SDVAEDecoder = None
self.vae_encoder: SDVAEEncoder = None
self.controlnet: MultiControlNetManager = None
self.ipadapter_image_encoder: IpAdapterCLIPImageEmbedder = None
self.ipadapter: SDIpAdapter = None
def denoising_model(self):
return self.unet
def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]):
# Main models
self.text_encoder = model_manager.fetch_model("sd_text_encoder")
self.unet = model_manager.fetch_model("sd_unet")
self.vae_decoder = model_manager.fetch_model("sd_vae_decoder")
self.vae_encoder = model_manager.fetch_model("sd_vae_encoder")
self.prompter.fetch_models(self.text_encoder)
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes)
# ControlNets
controlnet_units = []
for config in controlnet_config_units:
controlnet_unit = ControlNetUnit(
Annotator(config.processor_id, device=self.device),
model_manager.fetch_model("sd_controlnet", config.model_path),
config.scale
)
controlnet_units.append(controlnet_unit)
self.controlnet = MultiControlNetManager(controlnet_units)
# IP-Adapters
self.ipadapter = model_manager.fetch_model("sd_ipadapter")
self.ipadapter_image_encoder = model_manager.fetch_model("sd_ipadapter_clip_image_encoder")
@staticmethod
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]):
pipe = SDImagePipeline(
device=model_manager.device,
torch_dtype=model_manager.torch_dtype,
)
pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes=[])
return pipe
def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32):
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return latents
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
image = self.vae_output_to_image(image)
return image
def encode_prompt(self, prompt, clip_skip=1, positive=True):
prompt_emb = self.prompter.encode_prompt(prompt, clip_skip=clip_skip, device=self.device, positive=positive)
return {"encoder_hidden_states": prompt_emb}
def prepare_extra_input(self, latents=None):
return {}
@torch.no_grad()
def __call__(
self,
prompt,
local_prompts=[],
masks=[],
mask_scales=[],
negative_prompt="",
cfg_scale=7.5,
clip_skip=1,
input_image=None,
ipadapter_images=None,
ipadapter_scale=1.0,
controlnet_image=None,
denoising_strength=1.0,
height=512,
width=512,
num_inference_steps=20,
tiled=False,
tile_size=64,
tile_stride=32,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
# Tiler parameters
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
if input_image is not None:
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype)
latents = self.encode_image(image, **tiler_kwargs)
noise = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
else:
latents = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype)
# Encode prompts
prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, positive=True)
prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, positive=False)
prompt_emb_locals = [self.encode_prompt(prompt_local, clip_skip=clip_skip, positive=True) for prompt_local in local_prompts]
# IP-Adapter
if ipadapter_images is not None:
ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images)
ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)}
ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))}
else:
ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}}
# Prepare ControlNets
if controlnet_image is not None:
controlnet_image = self.controlnet.process_image(controlnet_image).to(device=self.device, dtype=self.torch_dtype)
controlnet_image = controlnet_image.unsqueeze(1)
controlnet_kwargs = {"controlnet_frames": controlnet_image}
else:
controlnet_kwargs = {"controlnet_frames": None}
# Denoise
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = timestep.unsqueeze(0).to(self.device)
# Classifier-free guidance
inference_callback = lambda prompt_emb_posi: lets_dance(
self.unet, motion_modules=None, controlnet=self.controlnet,
sample=latents, timestep=timestep,
**prompt_emb_posi, **controlnet_kwargs, **tiler_kwargs, **ipadapter_kwargs_list_posi,
device=self.device,
)
noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback)
noise_pred_nega = lets_dance(
self.unet, motion_modules=None, controlnet=self.controlnet,
sample=latents, timestep=timestep, **prompt_emb_nega, **controlnet_kwargs, **tiler_kwargs, **ipadapter_kwargs_list_nega,
device=self.device,
)
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
# DDIM
latents = self.scheduler.step(noise_pred, timestep, latents)
# UI
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return image