Spaces:
Running
on
Zero
Running
on
Zero
from ..models import ModelManager, SVDImageEncoder, SVDUNet, SVDVAEEncoder, SVDVAEDecoder | |
from ..schedulers import ContinuousODEScheduler | |
from .base import BasePipeline | |
import torch | |
from tqdm import tqdm | |
from PIL import Image | |
import numpy as np | |
from einops import rearrange, repeat | |
class SVDVideoPipeline(BasePipeline): | |
def __init__(self, device="cuda", torch_dtype=torch.float16): | |
super().__init__(device=device, torch_dtype=torch_dtype) | |
self.scheduler = ContinuousODEScheduler() | |
# models | |
self.image_encoder: SVDImageEncoder = None | |
self.unet: SVDUNet = None | |
self.vae_encoder: SVDVAEEncoder = None | |
self.vae_decoder: SVDVAEDecoder = None | |
def fetch_models(self, model_manager: ModelManager): | |
self.image_encoder = model_manager.fetch_model("svd_image_encoder") | |
self.unet = model_manager.fetch_model("svd_unet") | |
self.vae_encoder = model_manager.fetch_model("svd_vae_encoder") | |
self.vae_decoder = model_manager.fetch_model("svd_vae_decoder") | |
def from_model_manager(model_manager: ModelManager, **kwargs): | |
pipe = SVDVideoPipeline( | |
device=model_manager.device, | |
torch_dtype=model_manager.torch_dtype | |
) | |
pipe.fetch_models(model_manager) | |
return pipe | |
def encode_image_with_clip(self, image): | |
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) | |
image = SVDCLIPImageProcessor().resize_with_antialiasing(image, (224, 224)) | |
image = (image + 1.0) / 2.0 | |
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.torch_dtype) | |
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.torch_dtype) | |
image = (image - mean) / std | |
image_emb = self.image_encoder(image) | |
return image_emb | |
def encode_image_with_vae(self, image, noise_aug_strength): | |
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) | |
noise = torch.randn(image.shape, device="cpu", dtype=self.torch_dtype).to(self.device) | |
image = image + noise_aug_strength * noise | |
image_emb = self.vae_encoder(image) / self.vae_encoder.scaling_factor | |
return image_emb | |
def encode_video_with_vae(self, video): | |
video = torch.concat([self.preprocess_image(frame) for frame in video], dim=0) | |
video = rearrange(video, "T C H W -> 1 C T H W") | |
video = video.to(device=self.device, dtype=self.torch_dtype) | |
latents = self.vae_encoder.encode_video(video) | |
latents = rearrange(latents[0], "C T H W -> T C H W") | |
return latents | |
def tensor2video(self, frames): | |
frames = rearrange(frames, "C T H W -> T H W C") | |
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) | |
frames = [Image.fromarray(frame) for frame in frames] | |
return frames | |
def calculate_noise_pred( | |
self, | |
latents, | |
timestep, | |
add_time_id, | |
cfg_scales, | |
image_emb_vae_posi, image_emb_clip_posi, | |
image_emb_vae_nega, image_emb_clip_nega | |
): | |
# Positive side | |
noise_pred_posi = self.unet( | |
torch.cat([latents, image_emb_vae_posi], dim=1), | |
timestep, image_emb_clip_posi, add_time_id | |
) | |
# Negative side | |
noise_pred_nega = self.unet( | |
torch.cat([latents, image_emb_vae_nega], dim=1), | |
timestep, image_emb_clip_nega, add_time_id | |
) | |
# Classifier-free guidance | |
noise_pred = noise_pred_nega + cfg_scales * (noise_pred_posi - noise_pred_nega) | |
return noise_pred | |
def post_process_latents(self, latents, post_normalize=True, contrast_enhance_scale=1.0): | |
if post_normalize: | |
mean, std = latents.mean(), latents.std() | |
latents = (latents - latents.mean(dim=[1, 2, 3], keepdim=True)) / latents.std(dim=[1, 2, 3], keepdim=True) * std + mean | |
latents = latents * contrast_enhance_scale | |
return latents | |
def __call__( | |
self, | |
input_image=None, | |
input_video=None, | |
mask_frames=[], | |
mask_frame_ids=[], | |
min_cfg_scale=1.0, | |
max_cfg_scale=3.0, | |
denoising_strength=1.0, | |
num_frames=25, | |
height=576, | |
width=1024, | |
fps=7, | |
motion_bucket_id=127, | |
noise_aug_strength=0.02, | |
num_inference_steps=20, | |
post_normalize=True, | |
contrast_enhance_scale=1.2, | |
progress_bar_cmd=tqdm, | |
progress_bar_st=None, | |
): | |
# Prepare scheduler | |
self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength) | |
# Prepare latent tensors | |
noise = torch.randn((num_frames, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).to(self.device) | |
if denoising_strength == 1.0: | |
latents = noise.clone() | |
else: | |
latents = self.encode_video_with_vae(input_video) | |
latents = self.scheduler.add_noise(latents, noise, self.scheduler.timesteps[0]) | |
# Prepare mask frames | |
if len(mask_frames) > 0: | |
mask_latents = self.encode_video_with_vae(mask_frames) | |
# Encode image | |
image_emb_clip_posi = self.encode_image_with_clip(input_image) | |
image_emb_clip_nega = torch.zeros_like(image_emb_clip_posi) | |
image_emb_vae_posi = repeat(self.encode_image_with_vae(input_image, noise_aug_strength), "B C H W -> (B T) C H W", T=num_frames) | |
image_emb_vae_nega = torch.zeros_like(image_emb_vae_posi) | |
# Prepare classifier-free guidance | |
cfg_scales = torch.linspace(min_cfg_scale, max_cfg_scale, num_frames) | |
cfg_scales = cfg_scales.reshape(num_frames, 1, 1, 1).to(device=self.device, dtype=self.torch_dtype) | |
# Prepare positional id | |
add_time_id = torch.tensor([[fps-1, motion_bucket_id, noise_aug_strength]], device=self.device) | |
# Denoise | |
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
# Mask frames | |
for frame_id, mask_frame_id in enumerate(mask_frame_ids): | |
latents[mask_frame_id] = self.scheduler.add_noise(mask_latents[frame_id], noise[mask_frame_id], timestep) | |
# Fetch model output | |
noise_pred = self.calculate_noise_pred( | |
latents, timestep, add_time_id, cfg_scales, | |
image_emb_vae_posi, image_emb_clip_posi, image_emb_vae_nega, image_emb_clip_nega | |
) | |
# Forward Euler | |
latents = self.scheduler.step(noise_pred, timestep, latents) | |
# Update progress bar | |
if progress_bar_st is not None: | |
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) | |
# Decode image | |
latents = self.post_process_latents(latents, post_normalize=post_normalize, contrast_enhance_scale=contrast_enhance_scale) | |
video = self.vae_decoder.decode_video(latents, progress_bar=progress_bar_cmd) | |
video = self.tensor2video(video) | |
return video | |
class SVDCLIPImageProcessor: | |
def __init__(self): | |
pass | |
def resize_with_antialiasing(self, input, size, interpolation="bicubic", align_corners=True): | |
h, w = input.shape[-2:] | |
factors = (h / size[0], w / size[1]) | |
# First, we have to determine sigma | |
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171 | |
sigmas = ( | |
max((factors[0] - 1.0) / 2.0, 0.001), | |
max((factors[1] - 1.0) / 2.0, 0.001), | |
) | |
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma | |
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206 | |
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now | |
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3)) | |
# Make sure it is odd | |
if (ks[0] % 2) == 0: | |
ks = ks[0] + 1, ks[1] | |
if (ks[1] % 2) == 0: | |
ks = ks[0], ks[1] + 1 | |
input = self._gaussian_blur2d(input, ks, sigmas) | |
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners) | |
return output | |
def _compute_padding(self, kernel_size): | |
"""Compute padding tuple.""" | |
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom) | |
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad | |
if len(kernel_size) < 2: | |
raise AssertionError(kernel_size) | |
computed = [k - 1 for k in kernel_size] | |
# for even kernels we need to do asymmetric padding :( | |
out_padding = 2 * len(kernel_size) * [0] | |
for i in range(len(kernel_size)): | |
computed_tmp = computed[-(i + 1)] | |
pad_front = computed_tmp // 2 | |
pad_rear = computed_tmp - pad_front | |
out_padding[2 * i + 0] = pad_front | |
out_padding[2 * i + 1] = pad_rear | |
return out_padding | |
def _filter2d(self, input, kernel): | |
# prepare kernel | |
b, c, h, w = input.shape | |
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype) | |
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1) | |
height, width = tmp_kernel.shape[-2:] | |
padding_shape: list[int] = self._compute_padding([height, width]) | |
input = torch.nn.functional.pad(input, padding_shape, mode="reflect") | |
# kernel and input tensor reshape to align element-wise or batch-wise params | |
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width) | |
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1)) | |
# convolve the tensor with the kernel. | |
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1) | |
out = output.view(b, c, h, w) | |
return out | |
def _gaussian(self, window_size: int, sigma): | |
if isinstance(sigma, float): | |
sigma = torch.tensor([[sigma]]) | |
batch_size = sigma.shape[0] | |
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1) | |
if window_size % 2 == 0: | |
x = x + 0.5 | |
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0))) | |
return gauss / gauss.sum(-1, keepdim=True) | |
def _gaussian_blur2d(self, input, kernel_size, sigma): | |
if isinstance(sigma, tuple): | |
sigma = torch.tensor([sigma], dtype=input.dtype) | |
else: | |
sigma = sigma.to(dtype=input.dtype) | |
ky, kx = int(kernel_size[0]), int(kernel_size[1]) | |
bs = sigma.shape[0] | |
kernel_x = self._gaussian(kx, sigma[:, 1].view(bs, 1)) | |
kernel_y = self._gaussian(ky, sigma[:, 0].view(bs, 1)) | |
out_x = self._filter2d(input, kernel_x[..., None, :]) | |
out = self._filter2d(out_x, kernel_y[..., None]) | |
return out | |