wenmengzhou's picture
add code and adapt to zero gpus
703e263 verified
raw
history blame
11.4 kB
from ..models.hunyuan_dit import HunyuanDiT
from ..models.hunyuan_dit_text_encoder import HunyuanDiTCLIPTextEncoder, HunyuanDiTT5TextEncoder
from ..models.sdxl_vae_encoder import SDXLVAEEncoder
from ..models.sdxl_vae_decoder import SDXLVAEDecoder
from ..models import ModelManager
from ..prompters import HunyuanDiTPrompter
from ..schedulers import EnhancedDDIMScheduler
from .base import BasePipeline
import torch
from tqdm import tqdm
import numpy as np
class ImageSizeManager:
def __init__(self):
pass
def _to_tuple(self, x):
if isinstance(x, int):
return x, x
else:
return x
def get_fill_resize_and_crop(self, src, tgt):
th, tw = self._to_tuple(tgt)
h, w = self._to_tuple(src)
tr = th / tw # base 分辨率
r = h / w # 目标分辨率
# resize
if r > tr:
resize_height = th
resize_width = int(round(th / h * w))
else:
resize_width = tw
resize_height = int(round(tw / w * h)) # 根据base分辨率,将目标分辨率resize下来
crop_top = int(round((th - resize_height) / 2.0))
crop_left = int(round((tw - resize_width) / 2.0))
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)
def get_meshgrid(self, start, *args):
if len(args) == 0:
# start is grid_size
num = self._to_tuple(start)
start = (0, 0)
stop = num
elif len(args) == 1:
# start is start, args[0] is stop, step is 1
start = self._to_tuple(start)
stop = self._to_tuple(args[0])
num = (stop[0] - start[0], stop[1] - start[1])
elif len(args) == 2:
# start is start, args[0] is stop, args[1] is num
start = self._to_tuple(start) # 左上角 eg: 12,0
stop = self._to_tuple(args[0]) # 右下角 eg: 20,32
num = self._to_tuple(args[1]) # 目标大小 eg: 32,124
else:
raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")
grid_h = np.linspace(start[0], stop[0], num[0], endpoint=False, dtype=np.float32) # 12-20 中间差值32份 0-32 中间差值124份
grid_w = np.linspace(start[1], stop[1], num[1], endpoint=False, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0) # [2, W, H]
return grid
def get_2d_rotary_pos_embed(self, embed_dim, start, *args, use_real=True):
grid = self.get_meshgrid(start, *args) # [2, H, w]
grid = grid.reshape([2, 1, *grid.shape[1:]]) # 返回一个采样矩阵 分辨率与目标分辨率一致
pos_embed = self.get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
return pos_embed
def get_2d_rotary_pos_embed_from_grid(self, embed_dim, grid, use_real=False):
assert embed_dim % 4 == 0
# use half of dimensions to encode grid_h
emb_h = self.get_1d_rotary_pos_embed(embed_dim // 2, grid[0].reshape(-1), use_real=use_real) # (H*W, D/4)
emb_w = self.get_1d_rotary_pos_embed(embed_dim // 2, grid[1].reshape(-1), use_real=use_real) # (H*W, D/4)
if use_real:
cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D/2)
sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D/2)
return cos, sin
else:
emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2)
return emb
def get_1d_rotary_pos_embed(self, dim: int, pos, theta: float = 10000.0, use_real=False):
if isinstance(pos, int):
pos = np.arange(pos)
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) # [D/2]
t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S]
freqs = torch.outer(t, freqs).float() # type: ignore # [S, D/2]
if use_real:
freqs_cos = freqs.cos().repeat_interleave(2, dim=1) # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1) # [S, D]
return freqs_cos, freqs_sin
else:
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
return freqs_cis
def calc_rope(self, height, width):
patch_size = 2
head_size = 88
th = height // 8 // patch_size
tw = width // 8 // patch_size
base_size = 512 // 8 // patch_size
start, stop = self.get_fill_resize_and_crop((th, tw), base_size)
sub_args = [start, stop, (th, tw)]
rope = self.get_2d_rotary_pos_embed(head_size, *sub_args)
return rope
class HunyuanDiTImagePipeline(BasePipeline):
def __init__(self, device="cuda", torch_dtype=torch.float16):
super().__init__(device=device, torch_dtype=torch_dtype)
self.scheduler = EnhancedDDIMScheduler(prediction_type="v_prediction", beta_start=0.00085, beta_end=0.03)
self.prompter = HunyuanDiTPrompter()
self.image_size_manager = ImageSizeManager()
# models
self.text_encoder: HunyuanDiTCLIPTextEncoder = None
self.text_encoder_t5: HunyuanDiTT5TextEncoder = None
self.dit: HunyuanDiT = None
self.vae_decoder: SDXLVAEDecoder = None
self.vae_encoder: SDXLVAEEncoder = None
def denoising_model(self):
return self.dit
def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]):
# Main models
self.text_encoder = model_manager.fetch_model("hunyuan_dit_clip_text_encoder")
self.text_encoder_t5 = model_manager.fetch_model("hunyuan_dit_t5_text_encoder")
self.dit = model_manager.fetch_model("hunyuan_dit")
self.vae_decoder = model_manager.fetch_model("sdxl_vae_decoder")
self.vae_encoder = model_manager.fetch_model("sdxl_vae_encoder")
self.prompter.fetch_models(self.text_encoder, self.text_encoder_t5)
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes)
@staticmethod
def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[]):
pipe = HunyuanDiTImagePipeline(
device=model_manager.device,
torch_dtype=model_manager.torch_dtype,
)
pipe.fetch_models(model_manager, prompt_refiner_classes)
return pipe
def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32):
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return latents
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
image = self.vae_output_to_image(image)
return image
def encode_prompt(self, prompt, clip_skip=1, clip_skip_2=1, positive=True):
text_emb, text_emb_mask, text_emb_t5, text_emb_mask_t5 = self.prompter.encode_prompt(
prompt,
clip_skip=clip_skip,
clip_skip_2=clip_skip_2,
positive=positive,
device=self.device
)
return {
"text_emb": text_emb,
"text_emb_mask": text_emb_mask,
"text_emb_t5": text_emb_t5,
"text_emb_mask_t5": text_emb_mask_t5
}
def prepare_extra_input(self, latents=None, tiled=False, tile_size=64, tile_stride=32):
batch_size, height, width = latents.shape[0], latents.shape[2] * 8, latents.shape[3] * 8
if tiled:
height, width = tile_size * 16, tile_size * 16
image_meta_size = torch.as_tensor([width, height, width, height, 0, 0]).to(device=self.device)
freqs_cis_img = self.image_size_manager.calc_rope(height, width)
image_meta_size = torch.stack([image_meta_size] * batch_size)
return {
"size_emb": image_meta_size,
"freq_cis_img": (freqs_cis_img[0].to(dtype=self.torch_dtype, device=self.device), freqs_cis_img[1].to(dtype=self.torch_dtype, device=self.device)),
"tiled": tiled,
"tile_size": tile_size,
"tile_stride": tile_stride
}
@torch.no_grad()
def __call__(
self,
prompt,
local_prompts=[],
masks=[],
mask_scales=[],
negative_prompt="",
cfg_scale=7.5,
clip_skip=1,
clip_skip_2=1,
input_image=None,
reference_strengths=[0.4],
denoising_strength=1.0,
height=1024,
width=1024,
num_inference_steps=20,
tiled=False,
tile_size=64,
tile_stride=32,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength)
# Prepare latent tensors
noise = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype)
if input_image is not None:
image = self.preprocess_image(input_image).to(device=self.device, dtype=torch.float32)
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).to(self.torch_dtype)
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0])
else:
latents = noise.clone()
# Encode prompts
prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True)
if cfg_scale != 1.0:
prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True)
prompt_emb_locals = [self.encode_prompt(prompt_local, clip_skip=clip_skip, clip_skip_2=clip_skip_2, positive=True) for prompt_local in local_prompts]
# Prepare positional id
extra_input = self.prepare_extra_input(latents, tiled, tile_size)
# Denoise
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = torch.tensor([timestep]).to(dtype=self.torch_dtype, device=self.device)
# Positive side
inference_callback = lambda prompt_emb_posi: self.dit(latents, timestep=timestep, **prompt_emb_posi, **extra_input)
noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback)
if cfg_scale != 1.0:
# Negative side
noise_pred_nega = self.dit(
latents, timestep=timestep, **prompt_emb_nega, **extra_input,
)
# Classifier-free guidance
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
else:
noise_pred = noise_pred_posi
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
image = self.decode_image(latents.to(torch.float32), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)
return image