Spaces:
Running
on
Zero
Running
on
Zero
from ..models import SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDIpAdapter, IpAdapterCLIPImageEmbedder | |
from ..models.model_manager import ModelManager | |
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator | |
from ..prompters import SDPrompter | |
from ..schedulers import EnhancedDDIMScheduler | |
from .base import BasePipeline | |
from .dancer import lets_dance | |
from typing import List | |
import torch | |
from tqdm import tqdm | |
class SDImagePipeline(BasePipeline): | |
def __init__(self, device="cuda", torch_dtype=torch.float16): | |
super().__init__(device=device, torch_dtype=torch_dtype) | |
self.scheduler = EnhancedDDIMScheduler() | |
self.prompter = SDPrompter() | |
# models | |
self.text_encoder: SDTextEncoder = None | |
self.unet: SDUNet = None | |
self.vae_decoder: SDVAEDecoder = None | |
self.vae_encoder: SDVAEEncoder = None | |
self.controlnet: MultiControlNetManager = None | |
self.ipadapter_image_encoder: IpAdapterCLIPImageEmbedder = None | |
self.ipadapter: SDIpAdapter = None | |
def denoising_model(self): | |
return self.unet | |
def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]): | |
# Main models | |
self.text_encoder = model_manager.fetch_model("sd_text_encoder") | |
self.unet = model_manager.fetch_model("sd_unet") | |
self.vae_decoder = model_manager.fetch_model("sd_vae_decoder") | |
self.vae_encoder = model_manager.fetch_model("sd_vae_encoder") | |
self.prompter.fetch_models(self.text_encoder) | |
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) | |
# ControlNets | |
controlnet_units = [] | |
for config in controlnet_config_units: | |
controlnet_unit = ControlNetUnit( | |
Annotator(config.processor_id, device=self.device), | |
model_manager.fetch_model("sd_controlnet", config.model_path), | |
config.scale | |
) | |
controlnet_units.append(controlnet_unit) | |
self.controlnet = MultiControlNetManager(controlnet_units) | |
# IP-Adapters | |
self.ipadapter = model_manager.fetch_model("sd_ipadapter") | |
self.ipadapter_image_encoder = model_manager.fetch_model("sd_ipadapter_clip_image_encoder") | |
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]): | |
pipe = SDImagePipeline( | |
device=model_manager.device, | |
torch_dtype=model_manager.torch_dtype, | |
) | |
pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes=[]) | |
return pipe | |
def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): | |
latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
return latents | |
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): | |
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
image = self.vae_output_to_image(image) | |
return image | |
def encode_prompt(self, prompt, clip_skip=1, positive=True): | |
prompt_emb = self.prompter.encode_prompt(prompt, clip_skip=clip_skip, device=self.device, positive=positive) | |
return {"encoder_hidden_states": prompt_emb} | |
def prepare_extra_input(self, latents=None): | |
return {} | |
def __call__( | |
self, | |
prompt, | |
local_prompts=[], | |
masks=[], | |
mask_scales=[], | |
negative_prompt="", | |
cfg_scale=7.5, | |
clip_skip=1, | |
input_image=None, | |
ipadapter_images=None, | |
ipadapter_scale=1.0, | |
controlnet_image=None, | |
denoising_strength=1.0, | |
height=512, | |
width=512, | |
num_inference_steps=20, | |
tiled=False, | |
tile_size=64, | |
tile_stride=32, | |
progress_bar_cmd=tqdm, | |
progress_bar_st=None, | |
): | |
# Tiler parameters | |
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} | |
# Prepare scheduler | |
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) | |
# Prepare latent tensors | |
if input_image is not None: | |
image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) | |
latents = self.encode_image(image, **tiler_kwargs) | |
noise = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype) | |
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) | |
else: | |
latents = torch.randn((1, 4, height//8, width//8), device=self.device, dtype=self.torch_dtype) | |
# Encode prompts | |
prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, positive=True) | |
prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, positive=False) | |
prompt_emb_locals = [self.encode_prompt(prompt_local, clip_skip=clip_skip, positive=True) for prompt_local in local_prompts] | |
# IP-Adapter | |
if ipadapter_images is not None: | |
ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images) | |
ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)} | |
ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))} | |
else: | |
ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}} | |
# Prepare ControlNets | |
if controlnet_image is not None: | |
controlnet_image = self.controlnet.process_image(controlnet_image).to(device=self.device, dtype=self.torch_dtype) | |
controlnet_image = controlnet_image.unsqueeze(1) | |
controlnet_kwargs = {"controlnet_frames": controlnet_image} | |
else: | |
controlnet_kwargs = {"controlnet_frames": None} | |
# Denoise | |
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
timestep = timestep.unsqueeze(0).to(self.device) | |
# Classifier-free guidance | |
inference_callback = lambda prompt_emb_posi: lets_dance( | |
self.unet, motion_modules=None, controlnet=self.controlnet, | |
sample=latents, timestep=timestep, | |
**prompt_emb_posi, **controlnet_kwargs, **tiler_kwargs, **ipadapter_kwargs_list_posi, | |
device=self.device, | |
) | |
noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback) | |
noise_pred_nega = lets_dance( | |
self.unet, motion_modules=None, controlnet=self.controlnet, | |
sample=latents, timestep=timestep, **prompt_emb_nega, **controlnet_kwargs, **tiler_kwargs, **ipadapter_kwargs_list_nega, | |
device=self.device, | |
) | |
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
# DDIM | |
latents = self.scheduler.step(noise_pred, timestep, latents) | |
# UI | |
if progress_bar_st is not None: | |
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) | |
# Decode image | |
image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
return image | |