wenmengzhou's picture
add code and adapt to zero gpus
703e263 verified
raw
history blame
4.62 kB
import torch
from einops import repeat
from PIL import Image
import numpy as np
class ResidualDenseBlock(torch.nn.Module):
def __init__(self, num_feat=64, num_grow_ch=32):
super(ResidualDenseBlock, self).__init__()
self.conv1 = torch.nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1)
self.conv2 = torch.nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv3 = torch.nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv4 = torch.nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1)
self.conv5 = torch.nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1)
self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
x1 = self.lrelu(self.conv1(x))
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
class RRDB(torch.nn.Module):
def __init__(self, num_feat, num_grow_ch=32):
super(RRDB, self).__init__()
self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch)
self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch)
self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch)
def forward(self, x):
out = self.rdb1(x)
out = self.rdb2(out)
out = self.rdb3(out)
return out * 0.2 + x
class RRDBNet(torch.nn.Module):
def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32):
super(RRDBNet, self).__init__()
self.conv_first = torch.nn.Conv2d(num_in_ch, num_feat, 3, 1, 1)
self.body = torch.torch.nn.Sequential(*[RRDB(num_feat=num_feat, num_grow_ch=num_grow_ch) for _ in range(num_block)])
self.conv_body = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1)
# upsample
self.conv_up1 = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_up2 = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_hr = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1)
self.conv_last = torch.nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2, inplace=True)
def forward(self, x):
feat = x
feat = self.conv_first(feat)
body_feat = self.conv_body(self.body(feat))
feat = feat + body_feat
# upsample
feat = repeat(feat, "B C H W -> B C (H 2) (W 2)")
feat = self.lrelu(self.conv_up1(feat))
feat = repeat(feat, "B C H W -> B C (H 2) (W 2)")
feat = self.lrelu(self.conv_up2(feat))
out = self.conv_last(self.lrelu(self.conv_hr(feat)))
return out
class ESRGAN(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
@staticmethod
def from_pretrained(model_path):
model = RRDBNet()
state_dict = torch.load(model_path, map_location="cpu")["params_ema"]
model.load_state_dict(state_dict)
model.eval()
return ESRGAN(model)
def process_image(self, image):
image = torch.Tensor(np.array(image, dtype=np.float32) / 255).permute(2, 0, 1)
return image
def process_images(self, images):
images = [self.process_image(image) for image in images]
images = torch.stack(images)
return images
def decode_images(self, images):
images = (images.permute(0, 2, 3, 1) * 255).clip(0, 255).numpy().astype(np.uint8)
images = [Image.fromarray(image) for image in images]
return images
@torch.no_grad()
def upscale(self, images, batch_size=4, progress_bar=lambda x:x):
# Preprocess
input_tensor = self.process_images(images)
# Interpolate
output_tensor = []
for batch_id in progress_bar(range(0, input_tensor.shape[0], batch_size)):
batch_id_ = min(batch_id + batch_size, input_tensor.shape[0])
batch_input_tensor = input_tensor[batch_id: batch_id_]
batch_input_tensor = batch_input_tensor.to(
device=self.model.conv_first.weight.device,
dtype=self.model.conv_first.weight.dtype)
batch_output_tensor = self.model(batch_input_tensor)
output_tensor.append(batch_output_tensor.cpu())
# Output
output_tensor = torch.concat(output_tensor, dim=0)
# To images
output_images = self.decode_images(output_tensor)
return output_images