Spaces:
Running
on
Zero
Running
on
Zero
from transformers import AutoTokenizer | |
from ..models.model_manager import ModelManager | |
import torch | |
class BeautifulPrompt(torch.nn.Module): | |
def __init__(self, tokenizer_path=None, model=None, template=""): | |
super().__init__() | |
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) | |
self.model = model | |
self.template = template | |
def from_model_manager(model_nameger: ModelManager): | |
model, model_path = model_nameger.fetch_model("beautiful_prompt", require_model_path=True) | |
template = 'Instruction: Give a simple description of the image to generate a drawing prompt.\nInput: {raw_prompt}\nOutput:' | |
if model_path.endswith("v2"): | |
template = """Converts a simple image description into a prompt. \ | |
Prompts are formatted as multiple related tags separated by commas, plus you can use () to increase the weight, [] to decrease the weight, \ | |
or use a number to specify the weight. You should add appropriate words to make the images described in the prompt more aesthetically pleasing, \ | |
but make sure there is a correlation between the input and output.\n\ | |
### Input: {raw_prompt}\n### Output:""" | |
beautiful_prompt = BeautifulPrompt( | |
tokenizer_path=model_path, | |
model=model, | |
template=template | |
) | |
return beautiful_prompt | |
def __call__(self, raw_prompt, positive=True, **kwargs): | |
if positive: | |
model_input = self.template.format(raw_prompt=raw_prompt) | |
input_ids = self.tokenizer.encode(model_input, return_tensors='pt').to(self.model.device) | |
outputs = self.model.generate( | |
input_ids, | |
max_new_tokens=384, | |
do_sample=True, | |
temperature=0.9, | |
top_k=50, | |
top_p=0.95, | |
repetition_penalty=1.1, | |
num_return_sequences=1 | |
) | |
prompt = raw_prompt + ", " + self.tokenizer.batch_decode( | |
outputs[:, input_ids.size(1):], | |
skip_special_tokens=True | |
)[0].strip() | |
print(f"Your prompt is refined by BeautifulPrompt: {prompt}") | |
return prompt | |
else: | |
return raw_prompt | |
class Translator(torch.nn.Module): | |
def __init__(self, tokenizer_path=None, model=None): | |
super().__init__() | |
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) | |
self.model = model | |
def from_model_manager(model_nameger: ModelManager): | |
model, model_path = model_nameger.fetch_model("translator", require_model_path=True) | |
translator = Translator(tokenizer_path=model_path, model=model) | |
return translator | |
def __call__(self, prompt, **kwargs): | |
input_ids = self.tokenizer.encode(prompt, return_tensors='pt').to(self.model.device) | |
output_ids = self.model.generate(input_ids) | |
prompt = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] | |
print(f"Your prompt is translated: {prompt}") | |
return prompt | |