Spaces:
Running
on
Zero
Running
on
Zero
from .base_prompter import BasePrompter, tokenize_long_prompt | |
from ..models.model_manager import ModelManager, load_state_dict, search_for_embeddings | |
from ..models import SDTextEncoder | |
from transformers import CLIPTokenizer | |
import torch, os | |
class SDPrompter(BasePrompter): | |
def __init__(self, tokenizer_path=None): | |
if tokenizer_path is None: | |
base_path = os.path.dirname(os.path.dirname(__file__)) | |
tokenizer_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion/tokenizer") | |
super().__init__() | |
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path) | |
self.text_encoder: SDTextEncoder = None | |
self.textual_inversion_dict = {} | |
self.keyword_dict = {} | |
def fetch_models(self, text_encoder: SDTextEncoder = None): | |
self.text_encoder = text_encoder | |
def add_textual_inversions_to_model(self, textual_inversion_dict, text_encoder): | |
dtype = next(iter(text_encoder.parameters())).dtype | |
state_dict = text_encoder.token_embedding.state_dict() | |
token_embeddings = [state_dict["weight"]] | |
for keyword in textual_inversion_dict: | |
_, embeddings = textual_inversion_dict[keyword] | |
token_embeddings.append(embeddings.to(dtype=dtype, device=token_embeddings[0].device)) | |
token_embeddings = torch.concat(token_embeddings, dim=0) | |
state_dict["weight"] = token_embeddings | |
text_encoder.token_embedding = torch.nn.Embedding(token_embeddings.shape[0], token_embeddings.shape[1]) | |
text_encoder.token_embedding = text_encoder.token_embedding.to(dtype=dtype, device=token_embeddings[0].device) | |
text_encoder.token_embedding.load_state_dict(state_dict) | |
def add_textual_inversions_to_tokenizer(self, textual_inversion_dict, tokenizer): | |
additional_tokens = [] | |
for keyword in textual_inversion_dict: | |
tokens, _ = textual_inversion_dict[keyword] | |
additional_tokens += tokens | |
self.keyword_dict[keyword] = " " + " ".join(tokens) + " " | |
tokenizer.add_tokens(additional_tokens) | |
def load_textual_inversions(self, model_paths): | |
for model_path in model_paths: | |
keyword = os.path.splitext(os.path.split(model_path)[-1])[0] | |
state_dict = load_state_dict(model_path) | |
# Search for embeddings | |
for embeddings in search_for_embeddings(state_dict): | |
if len(embeddings.shape) == 2 and embeddings.shape[1] == 768: | |
tokens = [f"{keyword}_{i}" for i in range(embeddings.shape[0])] | |
self.textual_inversion_dict[keyword] = (tokens, embeddings) | |
self.add_textual_inversions_to_model(self.textual_inversion_dict, self.text_encoder) | |
self.add_textual_inversions_to_tokenizer(self.textual_inversion_dict, self.tokenizer) | |
def encode_prompt(self, prompt, clip_skip=1, device="cuda", positive=True): | |
prompt = self.process_prompt(prompt, positive=positive) | |
for keyword in self.keyword_dict: | |
if keyword in prompt: | |
print(f"Textual inversion {keyword} is enabled.") | |
prompt = prompt.replace(keyword, self.keyword_dict[keyword]) | |
input_ids = tokenize_long_prompt(self.tokenizer, prompt).to(device) | |
prompt_emb = self.text_encoder(input_ids, clip_skip=clip_skip) | |
prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) | |
return prompt_emb |