kIDAa's picture
add pro-tips and fix image size
c2030ad verified
raw
history blame
15.7 kB
import spaces
import os
os.system("pip install -r requirements.txt")
from huggingface_hub import login
login(token=os.getenv('HF_AK'))
from diffsynth import download_models
download_models(["FLUX.1-dev"], downloading_priority=["HuggingFace", "ModelScope"])
import gradio as gr
from diffsynth import ModelManager, SDImagePipeline, SDXLImagePipeline, SD3ImagePipeline, HunyuanDiTImagePipeline, FluxImagePipeline
import os, torch
from PIL import Image
import numpy as np
config = {
"model_config": {
"Stable Diffusion": {
"model_folder": "models/stable_diffusion",
"pipeline_class": SDImagePipeline,
"default_parameters": {
"cfg_scale": 7.0,
"height": 512,
"width": 512,
}
},
"Stable Diffusion XL": {
"model_folder": "models/stable_diffusion_xl",
"pipeline_class": SDXLImagePipeline,
"default_parameters": {
"cfg_scale": 7.0,
}
},
"Stable Diffusion 3": {
"model_folder": "models/stable_diffusion_3",
"pipeline_class": SD3ImagePipeline,
"default_parameters": {
"cfg_scale": 7.0,
}
},
"Stable Diffusion XL Turbo": {
"model_folder": "models/stable_diffusion_xl_turbo",
"pipeline_class": SDXLImagePipeline,
"default_parameters": {
"negative_prompt": "",
"cfg_scale": 1.0,
"num_inference_steps": 1,
"height": 512,
"width": 512,
}
},
"Kolors": {
"model_folder": "models/kolors",
"pipeline_class": SDXLImagePipeline,
"default_parameters": {
"cfg_scale": 7.0,
}
},
"HunyuanDiT": {
"model_folder": "models/HunyuanDiT",
"pipeline_class": HunyuanDiTImagePipeline,
"default_parameters": {
"cfg_scale": 7.0,
}
},
"FLUX": {
"model_folder": "models/FLUX",
"pipeline_class": FluxImagePipeline,
"default_parameters": {
"cfg_scale": 1.0,
}
}
},
"max_num_painter_layers": 3,
"max_num_model_cache": 2,
}
def load_model_list(model_type):
if model_type is None:
return []
folder = config["model_config"][model_type]["model_folder"]
file_list = [i for i in os.listdir(folder) if i.endswith(".safetensors")]
if model_type in ["HunyuanDiT", "Kolors", "FLUX"]:
file_list += [i for i in os.listdir(folder) if os.path.isdir(os.path.join(folder, i))]
file_list = sorted(file_list)
return file_list
def load_model(model_type, model_path):
global model_dict
model_key = f"{model_type}:{model_path}"
if model_key in model_dict:
return model_dict[model_key]
model_path = os.path.join(config["model_config"][model_type]["model_folder"], model_path)
model_manager = ModelManager()
if model_type == "HunyuanDiT":
model_manager.load_models([
os.path.join(model_path, "clip_text_encoder/pytorch_model.bin"),
os.path.join(model_path, "mt5/pytorch_model.bin"),
os.path.join(model_path, "model/pytorch_model_ema.pt"),
os.path.join(model_path, "sdxl-vae-fp16-fix/diffusion_pytorch_model.bin"),
])
elif model_type == "Kolors":
model_manager.load_models([
os.path.join(model_path, "text_encoder"),
os.path.join(model_path, "unet/diffusion_pytorch_model.safetensors"),
os.path.join(model_path, "vae/diffusion_pytorch_model.safetensors"),
])
elif model_type == "FLUX":
model_manager.torch_dtype = torch.bfloat16
file_list = [
os.path.join(model_path, "text_encoder/model.safetensors"),
os.path.join(model_path, "text_encoder_2"),
]
for file_name in os.listdir(model_path):
if file_name.endswith(".safetensors"):
file_list.append(os.path.join(model_path, file_name))
model_manager.load_models(file_list)
else:
model_manager.load_model(model_path)
pipe = config["model_config"][model_type]["pipeline_class"].from_model_manager(model_manager)
while len(model_dict) + 1 > config["max_num_model_cache"]:
key = next(iter(model_dict.keys()))
model_manager_to_release, _ = model_dict[key]
model_manager_to_release.to("cpu")
del model_dict[key]
torch.cuda.empty_cache()
model_dict[model_key] = model_manager, pipe
return model_manager, pipe
model_dict = {}
load_model("FLUX", "FLUX.1-dev")
with gr.Blocks() as app:
gr.Markdown("# DiffSynth-Studio Painter")
with gr.Row():
with gr.Column(scale=382, min_width=100):
with gr.Accordion(label="Model"):
model_type = gr.Dropdown(choices=["FLUX"], label="Model type", value="FLUX")
model_path = gr.Dropdown(choices=["FLUX.1-dev"], interactive=True, label="Model path", value="FLUX.1-dev")
@gr.on(inputs=model_type, outputs=model_path, triggers=model_type.change)
def model_type_to_model_path(model_type):
return gr.Dropdown(choices=load_model_list(model_type))
with gr.Accordion(label="Prompt"):
prompt = gr.Textbox(label="Prompt", lines=3)
negative_prompt = gr.Textbox(label="Negative prompt", lines=1)
cfg_scale = gr.Slider(minimum=1.0, maximum=10.0, value=1.0, step=0.1, interactive=True, label="Classifier-free guidance scale")
embedded_guidance = gr.Slider(minimum=0.0, maximum=10.0, value=0.0, step=0.1, interactive=True, label="Embedded guidance scale (only for FLUX)")
with gr.Accordion(label="Image"):
num_inference_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, interactive=True, label="Inference steps")
height = gr.Slider(minimum=1024, maximum=1024, value=1024, step=64, interactive=False, label="Height", visible=False)
width = gr.Slider(minimum=1024, maximum=1024, value=1024, step=64, interactive=False, label="Width", visible=False)
with gr.Column():
use_fixed_seed = gr.Checkbox(value=True, interactive=False, label="Use fixed seed")
seed = gr.Number(minimum=0, maximum=10**9, value=0, interactive=True, label="Random seed", show_label=False)
with gr.Row(elem_id="pro-tips"):
gr.Markdown("""
# Usage:
1. Enter a prompt and click "Generate" to create an image.
2. Click "Set as painter's background" to use the generated image as the canvas.
3. In the painter, draw the area you want to repaint and set a local prompt. For multiple areas with different prompts, use layer1 and layer2, and click "Enable this layer" to activate the canvas.
4. Click "Generate" again to obtain the repainted image.
5. If you want to regenerate a new image as the background, uncheck "Enable this layer," update the prompt, and click "Generate."
""")
@gr.on(
inputs=[model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width],
outputs=[prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width],
triggers=model_path.change
)
def model_path_to_default_params(model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width):
load_model(model_type, model_path)
cfg_scale = config["model_config"][model_type]["default_parameters"].get("cfg_scale", cfg_scale)
embedded_guidance = config["model_config"][model_type]["default_parameters"].get("embedded_guidance", embedded_guidance)
num_inference_steps = config["model_config"][model_type]["default_parameters"].get("num_inference_steps", num_inference_steps)
height = config["model_config"][model_type]["default_parameters"].get("height", height)
width = config["model_config"][model_type]["default_parameters"].get("width", width)
return prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width
with gr.Column(scale=618, min_width=100):
with gr.Accordion(label="Painter"):
enable_local_prompt_list = []
local_prompt_list = []
mask_scale_list = []
canvas_list = []
for painter_layer_id in range(config["max_num_painter_layers"]):
with gr.Tab(label=f"Layer {painter_layer_id}"):
enable_local_prompt_value = painter_layer_id == 0
enable_local_prompt = gr.Checkbox(
label="Enable this layer",
value=enable_local_prompt_value,
key=f"enable_local_prompt_{painter_layer_id}"
)
local_prompt = gr.Textbox(label="Local prompt", key=f"local_prompt_{painter_layer_id}")
mask_scale = gr.Slider(minimum=0.0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Mask scale", key=f"mask_scale_{painter_layer_id}")
canvas_size = (1024, 1024) if painter_layer_id == 0 else (1024, 1)
canvas = gr.ImageEditor(canvas_size=canvas_size, sources=None, layers=False, interactive=True, image_mode="RGBA",
brush=gr.Brush(default_size=100, default_color="#000000", colors=["#000000"]),
label="Painter", key=f"canvas_{painter_layer_id}")
@gr.on(inputs=[height, width, canvas], outputs=canvas, triggers=[height.change, width.change, canvas.clear, enable_local_prompt.change], show_progress="hidden")
def resize_canvas(height, width, canvas):
h, w = canvas["background"].shape[:2]
if h != height or width != w:
return np.ones((height, width, 3), dtype=np.uint8) * 255
else:
return canvas
enable_local_prompt_list.append(enable_local_prompt)
local_prompt_list.append(local_prompt)
mask_scale_list.append(mask_scale)
canvas_list.append(canvas)
with gr.Accordion(label="Results"):
run_button = gr.Button(value="Generate", variant="primary")
output_image = gr.Image(sources=None, show_label=False, interactive=False, type="pil")
output_to_painter_button = gr.Button(value="Set as painter's background")
painter_background = gr.State(None)
input_background = gr.State(None)
@gr.on(
inputs=[model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width, seed] + enable_local_prompt_list + local_prompt_list + mask_scale_list + canvas_list,
outputs=[output_image],
triggers=run_button.click
)
@spaces.GPU(duration=120)
def generate_image(model_type, model_path, prompt, negative_prompt, cfg_scale, embedded_guidance, num_inference_steps, height, width, seed, *args, progress=gr.Progress()):
_, pipe = load_model(model_type, model_path)
input_params = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"cfg_scale": cfg_scale,
"num_inference_steps": num_inference_steps,
"height": height,
"width": width,
"progress_bar_cmd": progress.tqdm,
}
if isinstance(pipe, FluxImagePipeline):
input_params["embedded_guidance"] = embedded_guidance
enable_local_prompt_list, local_prompt_list, mask_scale_list, canvas_list = (
args[0 * config["max_num_painter_layers"]: 1 * config["max_num_painter_layers"]],
args[1 * config["max_num_painter_layers"]: 2 * config["max_num_painter_layers"]],
args[2 * config["max_num_painter_layers"]: 3 * config["max_num_painter_layers"]],
args[3 * config["max_num_painter_layers"]: 4 * config["max_num_painter_layers"]]
)
local_prompts, masks, mask_scales = [], [], []
for enable_local_prompt, local_prompt, mask_scale, canvas in zip(
enable_local_prompt_list, local_prompt_list, mask_scale_list, canvas_list
):
if enable_local_prompt:
local_prompts.append(local_prompt)
masks.append(Image.fromarray(canvas["layers"][0][:, :, -1]).convert("RGB"))
mask_scales.append(mask_scale)
input_params.update({
"local_prompts": local_prompts,
"masks": masks,
"mask_scales": mask_scales,
})
torch.manual_seed(seed)
image = pipe(**input_params)
return image
@gr.on(inputs=[output_image] + canvas_list, outputs=canvas_list, triggers=output_to_painter_button.click)
def send_output_to_painter_background(output_image, *canvas_list):
for canvas in canvas_list:
h, w = canvas["background"].shape[:2]
canvas["background"] = output_image.resize((w, h))
return tuple(canvas_list)
canvas1 = {
"background": Image.open("images/image1.png"),
"layers": [np.array(Image.open("images/image1_layer.png"))],
"composite": "images/image1_layer.png",
}
canvas2 = {
"background": Image.open("images/image2.png"),
"layers": [np.array(Image.open("images/image2_layer.png"))],
"composite": "images/image2_layer.png",
}
canvas3 = {
"background": Image.open("images/image3.png"),
"layers": [np.array(Image.open("images/image3_layer.png"))],
"composite": "images/image3_layer.png",
}
print(*enable_local_prompt_list, *local_prompt_list, *mask_scale_list, *canvas_list)
with gr.Row():
show_case = gr.Examples(
examples=[
["a girl", 0, "images/image1.png", True, "red hat", 3.0, canvas1],
["an orange cat", 0, "images/image2.png", True, "a big crown on the cat", 3.0, canvas2],
["A young man is riding a horse", 0, "images/image3.png", True, "A robot is riding a horse", 3.0, canvas3],
],
inputs=[prompt, seed, output_image, enable_local_prompt_list[0], local_prompt_list[0], mask_scale_list[0], canvas_list[0]],
label=None
)
app.launch()