DiffSynth-Painter / diffsynth /data /simple_text_image.py
wenmengzhou's picture
add code and adapt to zero gpus
703e263 verified
raw
history blame
1.47 kB
import torch, os
from torchvision import transforms
import pandas as pd
from PIL import Image
class TextImageDataset(torch.utils.data.Dataset):
def __init__(self, dataset_path, steps_per_epoch=10000, height=1024, width=1024, center_crop=True, random_flip=False):
self.steps_per_epoch = steps_per_epoch
metadata = pd.read_csv(os.path.join(dataset_path, "train/metadata.csv"))
self.path = [os.path.join(dataset_path, "train", file_name) for file_name in metadata["file_name"]]
self.text = metadata["text"].to_list()
self.image_processor = transforms.Compose(
[
transforms.Resize(max(height, width), interpolation=transforms.InterpolationMode.BILINEAR),
transforms.CenterCrop((height, width)) if center_crop else transforms.RandomCrop((height, width)),
transforms.RandomHorizontalFlip() if random_flip else transforms.Lambda(lambda x: x),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __getitem__(self, index):
data_id = torch.randint(0, len(self.path), (1,))[0]
data_id = (data_id + index) % len(self.path) # For fixed seed.
text = self.text[data_id]
image = Image.open(self.path[data_id]).convert("RGB")
image = self.image_processor(image)
return {"text": text, "image": image}
def __len__(self):
return self.steps_per_epoch