DiffSynth-Painter / diffsynth /models /sd3_vae_encoder.py
wenmengzhou's picture
add code and adapt to zero gpus
703e263 verified
raw
history blame
3.6 kB
import torch
from .sd_unet import ResnetBlock, DownSampler
from .sd_vae_encoder import VAEAttentionBlock, SDVAEEncoderStateDictConverter
from .tiler import TileWorker
from einops import rearrange
class SD3VAEEncoder(torch.nn.Module):
def __init__(self):
super().__init__()
self.scaling_factor = 1.5305 # Different from SD 1.x
self.shift_factor = 0.0609 # Different from SD 1.x
self.conv_in = torch.nn.Conv2d(3, 128, kernel_size=3, padding=1)
self.blocks = torch.nn.ModuleList([
# DownEncoderBlock2D
ResnetBlock(128, 128, eps=1e-6),
ResnetBlock(128, 128, eps=1e-6),
DownSampler(128, padding=0, extra_padding=True),
# DownEncoderBlock2D
ResnetBlock(128, 256, eps=1e-6),
ResnetBlock(256, 256, eps=1e-6),
DownSampler(256, padding=0, extra_padding=True),
# DownEncoderBlock2D
ResnetBlock(256, 512, eps=1e-6),
ResnetBlock(512, 512, eps=1e-6),
DownSampler(512, padding=0, extra_padding=True),
# DownEncoderBlock2D
ResnetBlock(512, 512, eps=1e-6),
ResnetBlock(512, 512, eps=1e-6),
# UNetMidBlock2D
ResnetBlock(512, 512, eps=1e-6),
VAEAttentionBlock(1, 512, 512, 1, eps=1e-6),
ResnetBlock(512, 512, eps=1e-6),
])
self.conv_norm_out = torch.nn.GroupNorm(num_channels=512, num_groups=32, eps=1e-6)
self.conv_act = torch.nn.SiLU()
self.conv_out = torch.nn.Conv2d(512, 32, kernel_size=3, padding=1)
def tiled_forward(self, sample, tile_size=64, tile_stride=32):
hidden_states = TileWorker().tiled_forward(
lambda x: self.forward(x),
sample,
tile_size,
tile_stride,
tile_device=sample.device,
tile_dtype=sample.dtype
)
return hidden_states
def forward(self, sample, tiled=False, tile_size=64, tile_stride=32, **kwargs):
# For VAE Decoder, we do not need to apply the tiler on each layer.
if tiled:
return self.tiled_forward(sample, tile_size=tile_size, tile_stride=tile_stride)
# 1. pre-process
hidden_states = self.conv_in(sample)
time_emb = None
text_emb = None
res_stack = None
# 2. blocks
for i, block in enumerate(self.blocks):
hidden_states, time_emb, text_emb, res_stack = block(hidden_states, time_emb, text_emb, res_stack)
# 3. output
hidden_states = self.conv_norm_out(hidden_states)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
hidden_states = hidden_states[:, :16]
hidden_states = (hidden_states - self.shift_factor) * self.scaling_factor
return hidden_states
def encode_video(self, sample, batch_size=8):
B = sample.shape[0]
hidden_states = []
for i in range(0, sample.shape[2], batch_size):
j = min(i + batch_size, sample.shape[2])
sample_batch = rearrange(sample[:,:,i:j], "B C T H W -> (B T) C H W")
hidden_states_batch = self(sample_batch)
hidden_states_batch = rearrange(hidden_states_batch, "(B T) C H W -> B C T H W", B=B)
hidden_states.append(hidden_states_batch)
hidden_states = torch.concat(hidden_states, dim=2)
return hidden_states
@staticmethod
def state_dict_converter():
return SDVAEEncoderStateDictConverter()