wenmengzhou's picture
add code and adapt to zero gpus
703e263 verified
raw
history blame
4.21 kB
from .sd_motion import TemporalBlock
import torch
class SDXLMotionModel(torch.nn.Module):
def __init__(self):
super().__init__()
self.motion_modules = torch.nn.ModuleList([
TemporalBlock(8, 320//8, 320, eps=1e-6),
TemporalBlock(8, 320//8, 320, eps=1e-6),
TemporalBlock(8, 640//8, 640, eps=1e-6),
TemporalBlock(8, 640//8, 640, eps=1e-6),
TemporalBlock(8, 1280//8, 1280, eps=1e-6),
TemporalBlock(8, 1280//8, 1280, eps=1e-6),
TemporalBlock(8, 1280//8, 1280, eps=1e-6),
TemporalBlock(8, 1280//8, 1280, eps=1e-6),
TemporalBlock(8, 1280//8, 1280, eps=1e-6),
TemporalBlock(8, 640//8, 640, eps=1e-6),
TemporalBlock(8, 640//8, 640, eps=1e-6),
TemporalBlock(8, 640//8, 640, eps=1e-6),
TemporalBlock(8, 320//8, 320, eps=1e-6),
TemporalBlock(8, 320//8, 320, eps=1e-6),
TemporalBlock(8, 320//8, 320, eps=1e-6),
])
self.call_block_id = {
0: 0,
2: 1,
7: 2,
10: 3,
15: 4,
18: 5,
25: 6,
28: 7,
31: 8,
35: 9,
38: 10,
41: 11,
44: 12,
46: 13,
48: 14,
}
def forward(self):
pass
@staticmethod
def state_dict_converter():
return SDMotionModelStateDictConverter()
class SDMotionModelStateDictConverter:
def __init__(self):
pass
def from_diffusers(self, state_dict):
rename_dict = {
"norm": "norm",
"proj_in": "proj_in",
"transformer_blocks.0.attention_blocks.0.to_q": "transformer_blocks.0.attn1.to_q",
"transformer_blocks.0.attention_blocks.0.to_k": "transformer_blocks.0.attn1.to_k",
"transformer_blocks.0.attention_blocks.0.to_v": "transformer_blocks.0.attn1.to_v",
"transformer_blocks.0.attention_blocks.0.to_out.0": "transformer_blocks.0.attn1.to_out",
"transformer_blocks.0.attention_blocks.0.pos_encoder": "transformer_blocks.0.pe1",
"transformer_blocks.0.attention_blocks.1.to_q": "transformer_blocks.0.attn2.to_q",
"transformer_blocks.0.attention_blocks.1.to_k": "transformer_blocks.0.attn2.to_k",
"transformer_blocks.0.attention_blocks.1.to_v": "transformer_blocks.0.attn2.to_v",
"transformer_blocks.0.attention_blocks.1.to_out.0": "transformer_blocks.0.attn2.to_out",
"transformer_blocks.0.attention_blocks.1.pos_encoder": "transformer_blocks.0.pe2",
"transformer_blocks.0.norms.0": "transformer_blocks.0.norm1",
"transformer_blocks.0.norms.1": "transformer_blocks.0.norm2",
"transformer_blocks.0.ff.net.0.proj": "transformer_blocks.0.act_fn.proj",
"transformer_blocks.0.ff.net.2": "transformer_blocks.0.ff",
"transformer_blocks.0.ff_norm": "transformer_blocks.0.norm3",
"proj_out": "proj_out",
}
name_list = sorted([i for i in state_dict if i.startswith("down_blocks.")])
name_list += sorted([i for i in state_dict if i.startswith("mid_block.")])
name_list += sorted([i for i in state_dict if i.startswith("up_blocks.")])
state_dict_ = {}
last_prefix, module_id = "", -1
for name in name_list:
names = name.split(".")
prefix_index = names.index("temporal_transformer") + 1
prefix = ".".join(names[:prefix_index])
if prefix != last_prefix:
last_prefix = prefix
module_id += 1
middle_name = ".".join(names[prefix_index:-1])
suffix = names[-1]
if "pos_encoder" in names:
rename = ".".join(["motion_modules", str(module_id), rename_dict[middle_name]])
else:
rename = ".".join(["motion_modules", str(module_id), rename_dict[middle_name], suffix])
state_dict_[rename] = state_dict[name]
return state_dict_
def from_civitai(self, state_dict):
return self.from_diffusers(state_dict)