Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
class FlowMatchScheduler(): | |
def __init__(self, num_inference_steps=100, num_train_timesteps=1000, shift=3.0, sigma_max=1.0, sigma_min=0.003/1.002): | |
self.num_train_timesteps = num_train_timesteps | |
self.shift = shift | |
self.sigma_max = sigma_max | |
self.sigma_min = sigma_min | |
self.set_timesteps(num_inference_steps) | |
def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0): | |
sigma_start = self.sigma_min + (self.sigma_max - self.sigma_min) * denoising_strength | |
self.sigmas = torch.linspace(sigma_start, self.sigma_min, num_inference_steps) | |
self.sigmas = self.shift * self.sigmas / (1 + (self.shift - 1) * self.sigmas) | |
self.timesteps = self.sigmas * self.num_train_timesteps | |
def step(self, model_output, timestep, sample, to_final=False): | |
if isinstance(timestep, torch.Tensor): | |
timestep = timestep.cpu() | |
timestep_id = torch.argmin((self.timesteps - timestep).abs()) | |
sigma = self.sigmas[timestep_id] | |
if to_final or timestep_id + 1 >= len(self.timesteps): | |
sigma_ = 0 | |
else: | |
sigma_ = self.sigmas[timestep_id + 1] | |
prev_sample = sample + model_output * (sigma_ - sigma) | |
return prev_sample | |
def return_to_timestep(self, timestep, sample, sample_stablized): | |
# This scheduler doesn't support this function. | |
pass | |
def add_noise(self, original_samples, noise, timestep): | |
if isinstance(timestep, torch.Tensor): | |
timestep = timestep.cpu() | |
timestep_id = torch.argmin((self.timesteps - timestep).abs()) | |
sigma = self.sigmas[timestep_id] | |
sample = (1 - sigma) * original_samples + sigma * noise | |
return sample | |
def training_target(self, sample, noise, timestep): | |
target = noise - sample | |
return target | |