Spaces:
Running
on
Zero
Running
on
Zero
from ..patch_match import PyramidPatchMatcher | |
import functools, os | |
import numpy as np | |
from PIL import Image | |
from tqdm import tqdm | |
class TableManager: | |
def __init__(self): | |
pass | |
def task_list(self, n): | |
tasks = [] | |
max_level = 1 | |
while (1<<max_level)<=n: | |
max_level += 1 | |
for i in range(n): | |
j = i | |
for level in range(max_level): | |
if i&(1<<level): | |
continue | |
j |= 1<<level | |
if j>=n: | |
break | |
meta_data = { | |
"source": i, | |
"target": j, | |
"level": level + 1 | |
} | |
tasks.append(meta_data) | |
tasks.sort(key=functools.cmp_to_key(lambda u, v: u["level"]-v["level"])) | |
return tasks | |
def build_remapping_table(self, frames_guide, frames_style, patch_match_engine, batch_size, desc=""): | |
n = len(frames_guide) | |
tasks = self.task_list(n) | |
remapping_table = [[(frames_style[i], 1)] for i in range(n)] | |
for batch_id in tqdm(range(0, len(tasks), batch_size), desc=desc): | |
tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))] | |
source_guide = np.stack([frames_guide[task["source"]] for task in tasks_batch]) | |
target_guide = np.stack([frames_guide[task["target"]] for task in tasks_batch]) | |
source_style = np.stack([frames_style[task["source"]] for task in tasks_batch]) | |
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) | |
for task, result in zip(tasks_batch, target_style): | |
target, level = task["target"], task["level"] | |
if len(remapping_table[target])==level: | |
remapping_table[target].append((result, 1)) | |
else: | |
frame, weight = remapping_table[target][level] | |
remapping_table[target][level] = ( | |
frame * (weight / (weight + 1)) + result / (weight + 1), | |
weight + 1 | |
) | |
return remapping_table | |
def remapping_table_to_blending_table(self, table): | |
for i in range(len(table)): | |
for j in range(1, len(table[i])): | |
frame_1, weight_1 = table[i][j-1] | |
frame_2, weight_2 = table[i][j] | |
frame = (frame_1 + frame_2) / 2 | |
weight = weight_1 + weight_2 | |
table[i][j] = (frame, weight) | |
return table | |
def tree_query(self, leftbound, rightbound): | |
node_list = [] | |
node_index = rightbound | |
while node_index>=leftbound: | |
node_level = 0 | |
while (1<<node_level)&node_index and node_index-(1<<node_level+1)+1>=leftbound: | |
node_level += 1 | |
node_list.append((node_index, node_level)) | |
node_index -= 1<<node_level | |
return node_list | |
def process_window_sum(self, frames_guide, blending_table, patch_match_engine, window_size, batch_size, desc=""): | |
n = len(blending_table) | |
tasks = [] | |
frames_result = [] | |
for target in range(n): | |
node_list = self.tree_query(max(target-window_size, 0), target) | |
for source, level in node_list: | |
if source!=target: | |
meta_data = { | |
"source": source, | |
"target": target, | |
"level": level | |
} | |
tasks.append(meta_data) | |
else: | |
frames_result.append(blending_table[target][level]) | |
for batch_id in tqdm(range(0, len(tasks), batch_size), desc=desc): | |
tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))] | |
source_guide = np.stack([frames_guide[task["source"]] for task in tasks_batch]) | |
target_guide = np.stack([frames_guide[task["target"]] for task in tasks_batch]) | |
source_style = np.stack([blending_table[task["source"]][task["level"]][0] for task in tasks_batch]) | |
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) | |
for task, frame_2 in zip(tasks_batch, target_style): | |
source, target, level = task["source"], task["target"], task["level"] | |
frame_1, weight_1 = frames_result[target] | |
weight_2 = blending_table[source][level][1] | |
weight = weight_1 + weight_2 | |
frame = frame_1 * (weight_1 / weight) + frame_2 * (weight_2 / weight) | |
frames_result[target] = (frame, weight) | |
return frames_result | |
class FastModeRunner: | |
def __init__(self): | |
pass | |
def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config, save_path=None): | |
frames_guide = frames_guide.raw_data() | |
frames_style = frames_style.raw_data() | |
table_manager = TableManager() | |
patch_match_engine = PyramidPatchMatcher( | |
image_height=frames_style[0].shape[0], | |
image_width=frames_style[0].shape[1], | |
channel=3, | |
**ebsynth_config | |
) | |
# left part | |
table_l = table_manager.build_remapping_table(frames_guide, frames_style, patch_match_engine, batch_size, desc="Fast Mode Step 1/4") | |
table_l = table_manager.remapping_table_to_blending_table(table_l) | |
table_l = table_manager.process_window_sum(frames_guide, table_l, patch_match_engine, window_size, batch_size, desc="Fast Mode Step 2/4") | |
# right part | |
table_r = table_manager.build_remapping_table(frames_guide[::-1], frames_style[::-1], patch_match_engine, batch_size, desc="Fast Mode Step 3/4") | |
table_r = table_manager.remapping_table_to_blending_table(table_r) | |
table_r = table_manager.process_window_sum(frames_guide[::-1], table_r, patch_match_engine, window_size, batch_size, desc="Fast Mode Step 4/4")[::-1] | |
# merge | |
frames = [] | |
for (frame_l, weight_l), frame_m, (frame_r, weight_r) in zip(table_l, frames_style, table_r): | |
weight_m = -1 | |
weight = weight_l + weight_m + weight_r | |
frame = frame_l * (weight_l / weight) + frame_m * (weight_m / weight) + frame_r * (weight_r / weight) | |
frames.append(frame) | |
frames = [frame.clip(0, 255).astype("uint8") for frame in frames] | |
if save_path is not None: | |
for target, frame in enumerate(frames): | |
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % target)) | |