wenmengzhou's picture
add code and adapt to zero gpus
703e263 verified
from ..patch_match import PyramidPatchMatcher
import os
import numpy as np
from PIL import Image
from tqdm import tqdm
class InterpolationModeRunner:
def __init__(self):
pass
def get_index_dict(self, index_style):
index_dict = {}
for i, index in enumerate(index_style):
index_dict[index] = i
return index_dict
def get_weight(self, l, m, r):
weight_l, weight_r = abs(m - r), abs(m - l)
if weight_l + weight_r == 0:
weight_l, weight_r = 0.5, 0.5
else:
weight_l, weight_r = weight_l / (weight_l + weight_r), weight_r / (weight_l + weight_r)
return weight_l, weight_r
def get_task_group(self, index_style, n):
task_group = []
index_style = sorted(index_style)
# first frame
if index_style[0]>0:
tasks = []
for m in range(index_style[0]):
tasks.append((index_style[0], m, index_style[0]))
task_group.append(tasks)
# middle frames
for l, r in zip(index_style[:-1], index_style[1:]):
tasks = []
for m in range(l, r):
tasks.append((l, m, r))
task_group.append(tasks)
# last frame
tasks = []
for m in range(index_style[-1], n):
tasks.append((index_style[-1], m, index_style[-1]))
task_group.append(tasks)
return task_group
def run(self, frames_guide, frames_style, index_style, batch_size, ebsynth_config, save_path=None):
patch_match_engine = PyramidPatchMatcher(
image_height=frames_style[0].shape[0],
image_width=frames_style[0].shape[1],
channel=3,
use_mean_target_style=False,
use_pairwise_patch_error=True,
**ebsynth_config
)
# task
index_dict = self.get_index_dict(index_style)
task_group = self.get_task_group(index_style, len(frames_guide))
# run
for tasks in task_group:
index_start, index_end = min([i[1] for i in tasks]), max([i[1] for i in tasks])
for batch_id in tqdm(range(0, len(tasks), batch_size), desc=f"Rendering frames {index_start}...{index_end}"):
tasks_batch = tasks[batch_id: min(batch_id+batch_size, len(tasks))]
source_guide, target_guide, source_style = [], [], []
for l, m, r in tasks_batch:
# l -> m
source_guide.append(frames_guide[l])
target_guide.append(frames_guide[m])
source_style.append(frames_style[index_dict[l]])
# r -> m
source_guide.append(frames_guide[r])
target_guide.append(frames_guide[m])
source_style.append(frames_style[index_dict[r]])
source_guide = np.stack(source_guide)
target_guide = np.stack(target_guide)
source_style = np.stack(source_style)
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
if save_path is not None:
for frame_l, frame_r, (l, m, r) in zip(target_style[0::2], target_style[1::2], tasks_batch):
weight_l, weight_r = self.get_weight(l, m, r)
frame = frame_l * weight_l + frame_r * weight_r
frame = frame.clip(0, 255).astype("uint8")
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % m))
class InterpolationModeSingleFrameRunner:
def __init__(self):
pass
def run(self, frames_guide, frames_style, index_style, batch_size, ebsynth_config, save_path=None):
# check input
tracking_window_size = ebsynth_config["tracking_window_size"]
if tracking_window_size * 2 >= batch_size:
raise ValueError("batch_size should be larger than track_window_size * 2")
frame_style = frames_style[0]
frame_guide = frames_guide[index_style[0]]
patch_match_engine = PyramidPatchMatcher(
image_height=frame_style.shape[0],
image_width=frame_style.shape[1],
channel=3,
**ebsynth_config
)
# run
frame_id, n = 0, len(frames_guide)
for i in tqdm(range(0, n, batch_size - tracking_window_size * 2), desc=f"Rendering frames 0...{n}"):
if i + batch_size > n:
l, r = max(n - batch_size, 0), n
else:
l, r = i, i + batch_size
source_guide = np.stack([frame_guide] * (r-l))
target_guide = np.stack([frames_guide[i] for i in range(l, r)])
source_style = np.stack([frame_style] * (r-l))
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style)
for i, frame in zip(range(l, r), target_style):
if i==frame_id:
frame = frame.clip(0, 255).astype("uint8")
Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % frame_id))
frame_id += 1
if r < n and r-frame_id <= tracking_window_size:
break