Spaces:
Running
on
Zero
Running
on
Zero
from PIL import Image | |
import cupy as cp | |
import numpy as np | |
from tqdm import tqdm | |
from ..extensions.FastBlend.patch_match import PyramidPatchMatcher | |
from ..extensions.FastBlend.runners.fast import TableManager | |
from .base import VideoProcessor | |
class FastBlendSmoother(VideoProcessor): | |
def __init__( | |
self, | |
inference_mode="fast", batch_size=8, window_size=60, | |
minimum_patch_size=5, threads_per_block=8, num_iter=5, gpu_id=0, guide_weight=10.0, initialize="identity", tracking_window_size=0 | |
): | |
self.inference_mode = inference_mode | |
self.batch_size = batch_size | |
self.window_size = window_size | |
self.ebsynth_config = { | |
"minimum_patch_size": minimum_patch_size, | |
"threads_per_block": threads_per_block, | |
"num_iter": num_iter, | |
"gpu_id": gpu_id, | |
"guide_weight": guide_weight, | |
"initialize": initialize, | |
"tracking_window_size": tracking_window_size | |
} | |
def from_model_manager(model_manager, **kwargs): | |
# TODO: fetch GPU ID from model_manager | |
return FastBlendSmoother(**kwargs) | |
def inference_fast(self, frames_guide, frames_style): | |
table_manager = TableManager() | |
patch_match_engine = PyramidPatchMatcher( | |
image_height=frames_style[0].shape[0], | |
image_width=frames_style[0].shape[1], | |
channel=3, | |
**self.ebsynth_config | |
) | |
# left part | |
table_l = table_manager.build_remapping_table(frames_guide, frames_style, patch_match_engine, self.batch_size, desc="Fast Mode Step 1/4") | |
table_l = table_manager.remapping_table_to_blending_table(table_l) | |
table_l = table_manager.process_window_sum(frames_guide, table_l, patch_match_engine, self.window_size, self.batch_size, desc="Fast Mode Step 2/4") | |
# right part | |
table_r = table_manager.build_remapping_table(frames_guide[::-1], frames_style[::-1], patch_match_engine, self.batch_size, desc="Fast Mode Step 3/4") | |
table_r = table_manager.remapping_table_to_blending_table(table_r) | |
table_r = table_manager.process_window_sum(frames_guide[::-1], table_r, patch_match_engine, self.window_size, self.batch_size, desc="Fast Mode Step 4/4")[::-1] | |
# merge | |
frames = [] | |
for (frame_l, weight_l), frame_m, (frame_r, weight_r) in zip(table_l, frames_style, table_r): | |
weight_m = -1 | |
weight = weight_l + weight_m + weight_r | |
frame = frame_l * (weight_l / weight) + frame_m * (weight_m / weight) + frame_r * (weight_r / weight) | |
frames.append(frame) | |
frames = [frame.clip(0, 255).astype("uint8") for frame in frames] | |
frames = [Image.fromarray(frame) for frame in frames] | |
return frames | |
def inference_balanced(self, frames_guide, frames_style): | |
patch_match_engine = PyramidPatchMatcher( | |
image_height=frames_style[0].shape[0], | |
image_width=frames_style[0].shape[1], | |
channel=3, | |
**self.ebsynth_config | |
) | |
output_frames = [] | |
# tasks | |
n = len(frames_style) | |
tasks = [] | |
for target in range(n): | |
for source in range(target - self.window_size, target + self.window_size + 1): | |
if source >= 0 and source < n and source != target: | |
tasks.append((source, target)) | |
# run | |
frames = [(None, 1) for i in range(n)] | |
for batch_id in tqdm(range(0, len(tasks), self.batch_size), desc="Balanced Mode"): | |
tasks_batch = tasks[batch_id: min(batch_id+self.batch_size, len(tasks))] | |
source_guide = np.stack([frames_guide[source] for source, target in tasks_batch]) | |
target_guide = np.stack([frames_guide[target] for source, target in tasks_batch]) | |
source_style = np.stack([frames_style[source] for source, target in tasks_batch]) | |
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) | |
for (source, target), result in zip(tasks_batch, target_style): | |
frame, weight = frames[target] | |
if frame is None: | |
frame = frames_style[target] | |
frames[target] = ( | |
frame * (weight / (weight + 1)) + result / (weight + 1), | |
weight + 1 | |
) | |
if weight + 1 == min(n, target + self.window_size + 1) - max(0, target - self.window_size): | |
frame = frame.clip(0, 255).astype("uint8") | |
output_frames.append(Image.fromarray(frame)) | |
frames[target] = (None, 1) | |
return output_frames | |
def inference_accurate(self, frames_guide, frames_style): | |
patch_match_engine = PyramidPatchMatcher( | |
image_height=frames_style[0].shape[0], | |
image_width=frames_style[0].shape[1], | |
channel=3, | |
use_mean_target_style=True, | |
**self.ebsynth_config | |
) | |
output_frames = [] | |
# run | |
n = len(frames_style) | |
for target in tqdm(range(n), desc="Accurate Mode"): | |
l, r = max(target - self.window_size, 0), min(target + self.window_size + 1, n) | |
remapped_frames = [] | |
for i in range(l, r, self.batch_size): | |
j = min(i + self.batch_size, r) | |
source_guide = np.stack([frames_guide[source] for source in range(i, j)]) | |
target_guide = np.stack([frames_guide[target]] * (j - i)) | |
source_style = np.stack([frames_style[source] for source in range(i, j)]) | |
_, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) | |
remapped_frames.append(target_style) | |
frame = np.concatenate(remapped_frames, axis=0).mean(axis=0) | |
frame = frame.clip(0, 255).astype("uint8") | |
output_frames.append(Image.fromarray(frame)) | |
return output_frames | |
def release_vram(self): | |
mempool = cp.get_default_memory_pool() | |
pinned_mempool = cp.get_default_pinned_memory_pool() | |
mempool.free_all_blocks() | |
pinned_mempool.free_all_blocks() | |
def __call__(self, rendered_frames, original_frames=None, **kwargs): | |
rendered_frames = [np.array(frame) for frame in rendered_frames] | |
original_frames = [np.array(frame) for frame in original_frames] | |
if self.inference_mode == "fast": | |
output_frames = self.inference_fast(original_frames, rendered_frames) | |
elif self.inference_mode == "balanced": | |
output_frames = self.inference_balanced(original_frames, rendered_frames) | |
elif self.inference_mode == "accurate": | |
output_frames = self.inference_accurate(original_frames, rendered_frames) | |
else: | |
raise ValueError("inference_mode must be fast, balanced or accurate") | |
self.release_vram() | |
return output_frames | |