Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
from PIL import Image | |
from .base import VideoProcessor | |
class RIFESmoother(VideoProcessor): | |
def __init__(self, model, device="cuda", scale=1.0, batch_size=4, interpolate=True): | |
self.model = model | |
self.device = device | |
# IFNet only does not support float16 | |
self.torch_dtype = torch.float32 | |
# Other parameters | |
self.scale = scale | |
self.batch_size = batch_size | |
self.interpolate = interpolate | |
def from_model_manager(model_manager, **kwargs): | |
return RIFESmoother(model_manager.RIFE, device=model_manager.device, **kwargs) | |
def process_image(self, image): | |
width, height = image.size | |
if width % 32 != 0 or height % 32 != 0: | |
width = (width + 31) // 32 | |
height = (height + 31) // 32 | |
image = image.resize((width, height)) | |
image = torch.Tensor(np.array(image, dtype=np.float32)[:, :, [2,1,0]] / 255).permute(2, 0, 1) | |
return image | |
def process_images(self, images): | |
images = [self.process_image(image) for image in images] | |
images = torch.stack(images) | |
return images | |
def decode_images(self, images): | |
images = (images[:, [2,1,0]].permute(0, 2, 3, 1) * 255).clip(0, 255).numpy().astype(np.uint8) | |
images = [Image.fromarray(image) for image in images] | |
return images | |
def process_tensors(self, input_tensor, scale=1.0, batch_size=4): | |
output_tensor = [] | |
for batch_id in range(0, input_tensor.shape[0], batch_size): | |
batch_id_ = min(batch_id + batch_size, input_tensor.shape[0]) | |
batch_input_tensor = input_tensor[batch_id: batch_id_] | |
batch_input_tensor = batch_input_tensor.to(device=self.device, dtype=self.torch_dtype) | |
flow, mask, merged = self.model(batch_input_tensor, [4/scale, 2/scale, 1/scale]) | |
output_tensor.append(merged[2].cpu()) | |
output_tensor = torch.concat(output_tensor, dim=0) | |
return output_tensor | |
def __call__(self, rendered_frames, **kwargs): | |
# Preprocess | |
processed_images = self.process_images(rendered_frames) | |
# Input | |
input_tensor = torch.cat((processed_images[:-2], processed_images[2:]), dim=1) | |
# Interpolate | |
output_tensor = self.process_tensors(input_tensor, scale=self.scale, batch_size=self.batch_size) | |
if self.interpolate: | |
# Blend | |
input_tensor = torch.cat((processed_images[1:-1], output_tensor), dim=1) | |
output_tensor = self.process_tensors(input_tensor, scale=self.scale, batch_size=self.batch_size) | |
processed_images[1:-1] = output_tensor | |
else: | |
processed_images[1:-1] = (processed_images[1:-1] + output_tensor) / 2 | |
# To images | |
output_images = self.decode_images(processed_images) | |
if output_images[0].size != rendered_frames[0].size: | |
output_images = [image.resize(rendered_frames[0].size) for image in output_images] | |
return output_images | |