Spaces:
Running
on
Zero
Running
on
Zero
import torch, math | |
class EnhancedDDIMScheduler(): | |
def __init__(self, num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", prediction_type="epsilon"): | |
self.num_train_timesteps = num_train_timesteps | |
if beta_schedule == "scaled_linear": | |
betas = torch.square(torch.linspace(math.sqrt(beta_start), math.sqrt(beta_end), num_train_timesteps, dtype=torch.float32)) | |
elif beta_schedule == "linear": | |
betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) | |
else: | |
raise NotImplementedError(f"{beta_schedule} is not implemented") | |
self.alphas_cumprod = torch.cumprod(1.0 - betas, dim=0).tolist() | |
self.set_timesteps(10) | |
self.prediction_type = prediction_type | |
def set_timesteps(self, num_inference_steps, denoising_strength=1.0): | |
# The timesteps are aligned to 999...0, which is different from other implementations, | |
# but I think this implementation is more reasonable in theory. | |
max_timestep = max(round(self.num_train_timesteps * denoising_strength) - 1, 0) | |
num_inference_steps = min(num_inference_steps, max_timestep + 1) | |
if num_inference_steps == 1: | |
self.timesteps = torch.Tensor([max_timestep]) | |
else: | |
step_length = max_timestep / (num_inference_steps - 1) | |
self.timesteps = torch.Tensor([round(max_timestep - i*step_length) for i in range(num_inference_steps)]) | |
def denoise(self, model_output, sample, alpha_prod_t, alpha_prod_t_prev): | |
if self.prediction_type == "epsilon": | |
weight_e = math.sqrt(1 - alpha_prod_t_prev) - math.sqrt(alpha_prod_t_prev * (1 - alpha_prod_t) / alpha_prod_t) | |
weight_x = math.sqrt(alpha_prod_t_prev / alpha_prod_t) | |
prev_sample = sample * weight_x + model_output * weight_e | |
elif self.prediction_type == "v_prediction": | |
weight_e = -math.sqrt(alpha_prod_t_prev * (1 - alpha_prod_t)) + math.sqrt(alpha_prod_t * (1 - alpha_prod_t_prev)) | |
weight_x = math.sqrt(alpha_prod_t * alpha_prod_t_prev) + math.sqrt((1 - alpha_prod_t) * (1 - alpha_prod_t_prev)) | |
prev_sample = sample * weight_x + model_output * weight_e | |
else: | |
raise NotImplementedError(f"{self.prediction_type} is not implemented") | |
return prev_sample | |
def step(self, model_output, timestep, sample, to_final=False): | |
alpha_prod_t = self.alphas_cumprod[int(timestep.flatten().tolist()[0])] | |
if isinstance(timestep, torch.Tensor): | |
timestep = timestep.cpu() | |
timestep_id = torch.argmin((self.timesteps - timestep).abs()) | |
if to_final or timestep_id + 1 >= len(self.timesteps): | |
alpha_prod_t_prev = 1.0 | |
else: | |
timestep_prev = int(self.timesteps[timestep_id + 1]) | |
alpha_prod_t_prev = self.alphas_cumprod[timestep_prev] | |
return self.denoise(model_output, sample, alpha_prod_t, alpha_prod_t_prev) | |
def return_to_timestep(self, timestep, sample, sample_stablized): | |
alpha_prod_t = self.alphas_cumprod[int(timestep.flatten().tolist()[0])] | |
noise_pred = (sample - math.sqrt(alpha_prod_t) * sample_stablized) / math.sqrt(1 - alpha_prod_t) | |
return noise_pred | |
def add_noise(self, original_samples, noise, timestep): | |
sqrt_alpha_prod = math.sqrt(self.alphas_cumprod[int(timestep.flatten().tolist()[0])]) | |
sqrt_one_minus_alpha_prod = math.sqrt(1 - self.alphas_cumprod[int(timestep.flatten().tolist()[0])]) | |
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | |
return noisy_samples | |
def training_target(self, sample, noise, timestep): | |
if self.prediction_type == "epsilon": | |
return noise | |
else: | |
sqrt_alpha_prod = math.sqrt(self.alphas_cumprod[int(timestep.flatten().tolist()[0])]) | |
sqrt_one_minus_alpha_prod = math.sqrt(1 - self.alphas_cumprod[int(timestep.flatten().tolist()[0])]) | |
target = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample | |
return target | |