import torch from einops import rearrange, repeat class TileWorker: def __init__(self): pass def mask(self, height, width, border_width): # Create a mask with shape (height, width). # The centre area is filled with 1, and the border line is filled with values in range (0, 1]. x = torch.arange(height).repeat(width, 1).T y = torch.arange(width).repeat(height, 1) mask = torch.stack([x + 1, height - x, y + 1, width - y]).min(dim=0).values mask = (mask / border_width).clip(0, 1) return mask def tile(self, model_input, tile_size, tile_stride, tile_device, tile_dtype): # Convert a tensor (b, c, h, w) to (b, c, tile_size, tile_size, tile_num) batch_size, channel, _, _ = model_input.shape model_input = model_input.to(device=tile_device, dtype=tile_dtype) unfold_operator = torch.nn.Unfold( kernel_size=(tile_size, tile_size), stride=(tile_stride, tile_stride) ) model_input = unfold_operator(model_input) model_input = model_input.view((batch_size, channel, tile_size, tile_size, -1)) return model_input def tiled_inference(self, forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype): # Call y=forward_fn(x) for each tile tile_num = model_input.shape[-1] model_output_stack = [] for tile_id in range(0, tile_num, tile_batch_size): # process input tile_id_ = min(tile_id + tile_batch_size, tile_num) x = model_input[:, :, :, :, tile_id: tile_id_] x = x.to(device=inference_device, dtype=inference_dtype) x = rearrange(x, "b c h w n -> (n b) c h w") # process output y = forward_fn(x) y = rearrange(y, "(n b) c h w -> b c h w n", n=tile_id_-tile_id) y = y.to(device=tile_device, dtype=tile_dtype) model_output_stack.append(y) model_output = torch.concat(model_output_stack, dim=-1) return model_output def io_scale(self, model_output, tile_size): # Determine the size modification happend in forward_fn # We only consider the same scale on height and width. io_scale = model_output.shape[2] / tile_size return io_scale def untile(self, model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype): # The reversed function of tile mask = self.mask(tile_size, tile_size, border_width) mask = mask.to(device=tile_device, dtype=tile_dtype) mask = rearrange(mask, "h w -> 1 1 h w 1") model_output = model_output * mask fold_operator = torch.nn.Fold( output_size=(height, width), kernel_size=(tile_size, tile_size), stride=(tile_stride, tile_stride) ) mask = repeat(mask[0, 0, :, :, 0], "h w -> 1 (h w) n", n=model_output.shape[-1]) model_output = rearrange(model_output, "b c h w n -> b (c h w) n") model_output = fold_operator(model_output) / fold_operator(mask) return model_output def tiled_forward(self, forward_fn, model_input, tile_size, tile_stride, tile_batch_size=1, tile_device="cpu", tile_dtype=torch.float32, border_width=None): # Prepare inference_device, inference_dtype = model_input.device, model_input.dtype height, width = model_input.shape[2], model_input.shape[3] border_width = int(tile_stride*0.5) if border_width is None else border_width # tile model_input = self.tile(model_input, tile_size, tile_stride, tile_device, tile_dtype) # inference model_output = self.tiled_inference(forward_fn, model_input, tile_batch_size, inference_device, inference_dtype, tile_device, tile_dtype) # resize io_scale = self.io_scale(model_output, tile_size) height, width = int(height*io_scale), int(width*io_scale) tile_size, tile_stride = int(tile_size*io_scale), int(tile_stride*io_scale) border_width = int(border_width*io_scale) # untile model_output = self.untile(model_output, height, width, tile_size, tile_stride, border_width, tile_device, tile_dtype) # Done! model_output = model_output.to(device=inference_device, dtype=inference_dtype) return model_output