import torch import numpy as np from PIL import Image class BasePipeline(torch.nn.Module): def __init__(self, device="cuda", torch_dtype=torch.float16): super().__init__() self.device = device self.torch_dtype = torch_dtype def preprocess_image(self, image): image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0) return image def preprocess_images(self, images): return [self.preprocess_image(image) for image in images] def vae_output_to_image(self, vae_output): image = vae_output[0].cpu().float().permute(1, 2, 0).numpy() image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) return image def vae_output_to_video(self, vae_output): video = vae_output.cpu().permute(1, 2, 0).numpy() video = [Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) for image in video] return video def merge_latents(self, value, latents, masks, scales): height, width = value.shape[-2:] weight = torch.ones_like(value) for latent, mask, scale in zip(latents, masks, scales): mask = self.preprocess_image(mask.resize((width, height))).mean(dim=1, keepdim=True) > 0 mask = mask.repeat(1, latent.shape[1], 1, 1) value[mask] += latent[mask] * scale weight[mask] += scale value /= weight return value def control_noise_via_local_prompts(self, prompt_emb_global, prompt_emb_locals, masks, mask_scales, inference_callback): noise_pred_global = inference_callback(prompt_emb_global) noise_pred_locals = [inference_callback(prompt_emb_local) for prompt_emb_local in prompt_emb_locals] noise_pred = self.merge_latents(noise_pred_global, noise_pred_locals, masks, mask_scales) return noise_pred