import torch import numpy as np from PIL import Image from .base import VideoProcessor class RIFESmoother(VideoProcessor): def __init__(self, model, device="cuda", scale=1.0, batch_size=4, interpolate=True): self.model = model self.device = device # IFNet only does not support float16 self.torch_dtype = torch.float32 # Other parameters self.scale = scale self.batch_size = batch_size self.interpolate = interpolate @staticmethod def from_model_manager(model_manager, **kwargs): return RIFESmoother(model_manager.RIFE, device=model_manager.device, **kwargs) def process_image(self, image): width, height = image.size if width % 32 != 0 or height % 32 != 0: width = (width + 31) // 32 height = (height + 31) // 32 image = image.resize((width, height)) image = torch.Tensor(np.array(image, dtype=np.float32)[:, :, [2,1,0]] / 255).permute(2, 0, 1) return image def process_images(self, images): images = [self.process_image(image) for image in images] images = torch.stack(images) return images def decode_images(self, images): images = (images[:, [2,1,0]].permute(0, 2, 3, 1) * 255).clip(0, 255).numpy().astype(np.uint8) images = [Image.fromarray(image) for image in images] return images def process_tensors(self, input_tensor, scale=1.0, batch_size=4): output_tensor = [] for batch_id in range(0, input_tensor.shape[0], batch_size): batch_id_ = min(batch_id + batch_size, input_tensor.shape[0]) batch_input_tensor = input_tensor[batch_id: batch_id_] batch_input_tensor = batch_input_tensor.to(device=self.device, dtype=self.torch_dtype) flow, mask, merged = self.model(batch_input_tensor, [4/scale, 2/scale, 1/scale]) output_tensor.append(merged[2].cpu()) output_tensor = torch.concat(output_tensor, dim=0) return output_tensor @torch.no_grad() def __call__(self, rendered_frames, **kwargs): # Preprocess processed_images = self.process_images(rendered_frames) # Input input_tensor = torch.cat((processed_images[:-2], processed_images[2:]), dim=1) # Interpolate output_tensor = self.process_tensors(input_tensor, scale=self.scale, batch_size=self.batch_size) if self.interpolate: # Blend input_tensor = torch.cat((processed_images[1:-1], output_tensor), dim=1) output_tensor = self.process_tensors(input_tensor, scale=self.scale, batch_size=self.batch_size) processed_images[1:-1] = output_tensor else: processed_images[1:-1] = (processed_images[1:-1] + output_tensor) / 2 # To images output_images = self.decode_images(processed_images) if output_images[0].size != rendered_frames[0].size: output_images = [image.resize(rendered_frames[0].size) for image in output_images] return output_images