import torch from einops import rearrange def low_version_attention(query, key, value, attn_bias=None): scale = 1 / query.shape[-1] ** 0.5 query = query * scale attn = torch.matmul(query, key.transpose(-2, -1)) if attn_bias is not None: attn = attn + attn_bias attn = attn.softmax(-1) return attn @ value class Attention(torch.nn.Module): def __init__(self, q_dim, num_heads, head_dim, kv_dim=None, bias_q=False, bias_kv=False, bias_out=False): super().__init__() dim_inner = head_dim * num_heads kv_dim = kv_dim if kv_dim is not None else q_dim self.num_heads = num_heads self.head_dim = head_dim self.to_q = torch.nn.Linear(q_dim, dim_inner, bias=bias_q) self.to_k = torch.nn.Linear(kv_dim, dim_inner, bias=bias_kv) self.to_v = torch.nn.Linear(kv_dim, dim_inner, bias=bias_kv) self.to_out = torch.nn.Linear(dim_inner, q_dim, bias=bias_out) def interact_with_ipadapter(self, hidden_states, q, ip_k, ip_v, scale=1.0): batch_size = q.shape[0] ip_k = ip_k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) ip_v = ip_v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) ip_hidden_states = torch.nn.functional.scaled_dot_product_attention(q, ip_k, ip_v) hidden_states = hidden_states + scale * ip_hidden_states return hidden_states def torch_forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None, ipadapter_kwargs=None, qkv_preprocessor=None): if encoder_hidden_states is None: encoder_hidden_states = hidden_states batch_size = encoder_hidden_states.shape[0] q = self.to_q(hidden_states) k = self.to_k(encoder_hidden_states) v = self.to_v(encoder_hidden_states) q = q.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) k = k.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) v = v.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) if qkv_preprocessor is not None: q, k, v = qkv_preprocessor(q, k, v) hidden_states = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask) if ipadapter_kwargs is not None: hidden_states = self.interact_with_ipadapter(hidden_states, q, **ipadapter_kwargs) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_dim) hidden_states = hidden_states.to(q.dtype) hidden_states = self.to_out(hidden_states) return hidden_states def xformers_forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None): if encoder_hidden_states is None: encoder_hidden_states = hidden_states q = self.to_q(hidden_states) k = self.to_k(encoder_hidden_states) v = self.to_v(encoder_hidden_states) q = rearrange(q, "b f (n d) -> (b n) f d", n=self.num_heads) k = rearrange(k, "b f (n d) -> (b n) f d", n=self.num_heads) v = rearrange(v, "b f (n d) -> (b n) f d", n=self.num_heads) if attn_mask is not None: hidden_states = low_version_attention(q, k, v, attn_bias=attn_mask) else: import xformers.ops as xops hidden_states = xops.memory_efficient_attention(q, k, v) hidden_states = rearrange(hidden_states, "(b n) f d -> b f (n d)", n=self.num_heads) hidden_states = hidden_states.to(q.dtype) hidden_states = self.to_out(hidden_states) return hidden_states def forward(self, hidden_states, encoder_hidden_states=None, attn_mask=None, ipadapter_kwargs=None, qkv_preprocessor=None): return self.torch_forward(hidden_states, encoder_hidden_states=encoder_hidden_states, attn_mask=attn_mask, ipadapter_kwargs=ipadapter_kwargs, qkv_preprocessor=qkv_preprocessor)