from .base_prompter import BasePrompter from ..models.flux_text_encoder import FluxTextEncoder1, FluxTextEncoder2 from transformers import CLIPTokenizer, T5TokenizerFast import os, torch class FluxPrompter(BasePrompter): def __init__( self, tokenizer_1_path=None, tokenizer_2_path=None ): if tokenizer_1_path is None: base_path = os.path.dirname(os.path.dirname(__file__)) tokenizer_1_path = os.path.join(base_path, "tokenizer_configs/flux/tokenizer_1") if tokenizer_2_path is None: base_path = os.path.dirname(os.path.dirname(__file__)) tokenizer_2_path = os.path.join(base_path, "tokenizer_configs/flux/tokenizer_2") super().__init__() self.tokenizer_1 = CLIPTokenizer.from_pretrained(tokenizer_1_path) self.tokenizer_2 = T5TokenizerFast.from_pretrained(tokenizer_2_path) self.text_encoder_1: FluxTextEncoder1 = None self.text_encoder_2: FluxTextEncoder2 = None def fetch_models(self, text_encoder_1: FluxTextEncoder1 = None, text_encoder_2: FluxTextEncoder2 = None): self.text_encoder_1 = text_encoder_1 self.text_encoder_2 = text_encoder_2 def encode_prompt_using_clip(self, prompt, text_encoder, tokenizer, max_length, device): input_ids = tokenizer( prompt, return_tensors="pt", padding="max_length", max_length=max_length, truncation=True ).input_ids.to(device) _, pooled_prompt_emb = text_encoder(input_ids) return pooled_prompt_emb def encode_prompt_using_t5(self, prompt, text_encoder, tokenizer, max_length, device): input_ids = tokenizer( prompt, return_tensors="pt", padding="max_length", max_length=max_length, truncation=True, ).input_ids.to(device) prompt_emb = text_encoder(input_ids) prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) return prompt_emb def encode_prompt( self, prompt, positive=True, device="cuda" ): prompt = self.process_prompt(prompt, positive=positive) # CLIP pooled_prompt_emb = self.encode_prompt_using_clip(prompt, self.text_encoder_1, self.tokenizer_1, 77, device) # T5 prompt_emb = self.encode_prompt_using_t5(prompt, self.text_encoder_2, self.tokenizer_2, 256, device) # text_ids text_ids = torch.zeros(prompt_emb.shape[0], prompt_emb.shape[1], 3).to(device=device, dtype=prompt_emb.dtype) return prompt_emb, pooled_prompt_emb, text_ids