import torch, math class EnhancedDDIMScheduler(): def __init__(self, num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", prediction_type="epsilon"): self.num_train_timesteps = num_train_timesteps if beta_schedule == "scaled_linear": betas = torch.square(torch.linspace(math.sqrt(beta_start), math.sqrt(beta_end), num_train_timesteps, dtype=torch.float32)) elif beta_schedule == "linear": betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) else: raise NotImplementedError(f"{beta_schedule} is not implemented") self.alphas_cumprod = torch.cumprod(1.0 - betas, dim=0).tolist() self.set_timesteps(10) self.prediction_type = prediction_type def set_timesteps(self, num_inference_steps, denoising_strength=1.0): # The timesteps are aligned to 999...0, which is different from other implementations, # but I think this implementation is more reasonable in theory. max_timestep = max(round(self.num_train_timesteps * denoising_strength) - 1, 0) num_inference_steps = min(num_inference_steps, max_timestep + 1) if num_inference_steps == 1: self.timesteps = torch.Tensor([max_timestep]) else: step_length = max_timestep / (num_inference_steps - 1) self.timesteps = torch.Tensor([round(max_timestep - i*step_length) for i in range(num_inference_steps)]) def denoise(self, model_output, sample, alpha_prod_t, alpha_prod_t_prev): if self.prediction_type == "epsilon": weight_e = math.sqrt(1 - alpha_prod_t_prev) - math.sqrt(alpha_prod_t_prev * (1 - alpha_prod_t) / alpha_prod_t) weight_x = math.sqrt(alpha_prod_t_prev / alpha_prod_t) prev_sample = sample * weight_x + model_output * weight_e elif self.prediction_type == "v_prediction": weight_e = -math.sqrt(alpha_prod_t_prev * (1 - alpha_prod_t)) + math.sqrt(alpha_prod_t * (1 - alpha_prod_t_prev)) weight_x = math.sqrt(alpha_prod_t * alpha_prod_t_prev) + math.sqrt((1 - alpha_prod_t) * (1 - alpha_prod_t_prev)) prev_sample = sample * weight_x + model_output * weight_e else: raise NotImplementedError(f"{self.prediction_type} is not implemented") return prev_sample def step(self, model_output, timestep, sample, to_final=False): alpha_prod_t = self.alphas_cumprod[int(timestep.flatten().tolist()[0])] if isinstance(timestep, torch.Tensor): timestep = timestep.cpu() timestep_id = torch.argmin((self.timesteps - timestep).abs()) if to_final or timestep_id + 1 >= len(self.timesteps): alpha_prod_t_prev = 1.0 else: timestep_prev = int(self.timesteps[timestep_id + 1]) alpha_prod_t_prev = self.alphas_cumprod[timestep_prev] return self.denoise(model_output, sample, alpha_prod_t, alpha_prod_t_prev) def return_to_timestep(self, timestep, sample, sample_stablized): alpha_prod_t = self.alphas_cumprod[int(timestep.flatten().tolist()[0])] noise_pred = (sample - math.sqrt(alpha_prod_t) * sample_stablized) / math.sqrt(1 - alpha_prod_t) return noise_pred def add_noise(self, original_samples, noise, timestep): sqrt_alpha_prod = math.sqrt(self.alphas_cumprod[int(timestep.flatten().tolist()[0])]) sqrt_one_minus_alpha_prod = math.sqrt(1 - self.alphas_cumprod[int(timestep.flatten().tolist()[0])]) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def training_target(self, sample, noise, timestep): if self.prediction_type == "epsilon": return noise else: sqrt_alpha_prod = math.sqrt(self.alphas_cumprod[int(timestep.flatten().tolist()[0])]) sqrt_one_minus_alpha_prod = math.sqrt(1 - self.alphas_cumprod[int(timestep.flatten().tolist()[0])]) target = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return target