import torch from einops import repeat from PIL import Image import numpy as np class ResidualDenseBlock(torch.nn.Module): def __init__(self, num_feat=64, num_grow_ch=32): super(ResidualDenseBlock, self).__init__() self.conv1 = torch.nn.Conv2d(num_feat, num_grow_ch, 3, 1, 1) self.conv2 = torch.nn.Conv2d(num_feat + num_grow_ch, num_grow_ch, 3, 1, 1) self.conv3 = torch.nn.Conv2d(num_feat + 2 * num_grow_ch, num_grow_ch, 3, 1, 1) self.conv4 = torch.nn.Conv2d(num_feat + 3 * num_grow_ch, num_grow_ch, 3, 1, 1) self.conv5 = torch.nn.Conv2d(num_feat + 4 * num_grow_ch, num_feat, 3, 1, 1) self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x): x1 = self.lrelu(self.conv1(x)) x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1))) x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1))) x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1))) x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1)) return x5 * 0.2 + x class RRDB(torch.nn.Module): def __init__(self, num_feat, num_grow_ch=32): super(RRDB, self).__init__() self.rdb1 = ResidualDenseBlock(num_feat, num_grow_ch) self.rdb2 = ResidualDenseBlock(num_feat, num_grow_ch) self.rdb3 = ResidualDenseBlock(num_feat, num_grow_ch) def forward(self, x): out = self.rdb1(x) out = self.rdb2(out) out = self.rdb3(out) return out * 0.2 + x class RRDBNet(torch.nn.Module): def __init__(self, num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32): super(RRDBNet, self).__init__() self.conv_first = torch.nn.Conv2d(num_in_ch, num_feat, 3, 1, 1) self.body = torch.torch.nn.Sequential(*[RRDB(num_feat=num_feat, num_grow_ch=num_grow_ch) for _ in range(num_block)]) self.conv_body = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1) # upsample self.conv_up1 = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.conv_up2 = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.conv_hr = torch.nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.conv_last = torch.nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) self.lrelu = torch.nn.LeakyReLU(negative_slope=0.2, inplace=True) def forward(self, x): feat = x feat = self.conv_first(feat) body_feat = self.conv_body(self.body(feat)) feat = feat + body_feat # upsample feat = repeat(feat, "B C H W -> B C (H 2) (W 2)") feat = self.lrelu(self.conv_up1(feat)) feat = repeat(feat, "B C H W -> B C (H 2) (W 2)") feat = self.lrelu(self.conv_up2(feat)) out = self.conv_last(self.lrelu(self.conv_hr(feat))) return out class ESRGAN(torch.nn.Module): def __init__(self, model): super().__init__() self.model = model @staticmethod def from_pretrained(model_path): model = RRDBNet() state_dict = torch.load(model_path, map_location="cpu")["params_ema"] model.load_state_dict(state_dict) model.eval() return ESRGAN(model) def process_image(self, image): image = torch.Tensor(np.array(image, dtype=np.float32) / 255).permute(2, 0, 1) return image def process_images(self, images): images = [self.process_image(image) for image in images] images = torch.stack(images) return images def decode_images(self, images): images = (images.permute(0, 2, 3, 1) * 255).clip(0, 255).numpy().astype(np.uint8) images = [Image.fromarray(image) for image in images] return images @torch.no_grad() def upscale(self, images, batch_size=4, progress_bar=lambda x:x): # Preprocess input_tensor = self.process_images(images) # Interpolate output_tensor = [] for batch_id in progress_bar(range(0, input_tensor.shape[0], batch_size)): batch_id_ = min(batch_id + batch_size, input_tensor.shape[0]) batch_input_tensor = input_tensor[batch_id: batch_id_] batch_input_tensor = batch_input_tensor.to( device=self.model.conv_first.weight.device, dtype=self.model.conv_first.weight.dtype) batch_output_tensor = self.model(batch_input_tensor) output_tensor.append(batch_output_tensor.cpu()) # Output output_tensor = torch.concat(output_tensor, dim=0) # To images output_images = self.decode_images(output_tensor) return output_images