from .runners import AccurateModeRunner, FastModeRunner, BalancedModeRunner, InterpolationModeRunner, InterpolationModeSingleFrameRunner from .data import VideoData, get_video_fps, save_video, search_for_images import os import gradio as gr def check_input_for_blending(video_guide, video_guide_folder, video_style, video_style_folder): frames_guide = VideoData(video_guide, video_guide_folder) frames_style = VideoData(video_style, video_style_folder) message = "" if len(frames_guide) < len(frames_style): message += f"The number of frames mismatches. Only the first {len(frames_guide)} frames of style video will be used.\n" frames_style.set_length(len(frames_guide)) elif len(frames_guide) > len(frames_style): message += f"The number of frames mismatches. Only the first {len(frames_style)} frames of guide video will be used.\n" frames_guide.set_length(len(frames_style)) height_guide, width_guide = frames_guide.shape() height_style, width_style = frames_style.shape() if height_guide != height_style or width_guide != width_style: message += f"The shape of frames mismatches. The frames in style video will be resized to (height: {height_guide}, width: {width_guide})\n" frames_style.set_shape(height_guide, width_guide) return frames_guide, frames_style, message def smooth_video( video_guide, video_guide_folder, video_style, video_style_folder, mode, window_size, batch_size, tracking_window_size, output_path, fps, minimum_patch_size, num_iter, guide_weight, initialize, progress = None, ): # input frames_guide, frames_style, message = check_input_for_blending(video_guide, video_guide_folder, video_style, video_style_folder) if len(message) > 0: print(message) # output if output_path == "": if video_style is None: output_path = os.path.join(video_style_folder, "output") else: output_path = os.path.join(os.path.split(video_style)[0], "output") os.makedirs(output_path, exist_ok=True) print("No valid output_path. Your video will be saved here:", output_path) elif not os.path.exists(output_path): os.makedirs(output_path, exist_ok=True) print("Your video will be saved here:", output_path) frames_path = os.path.join(output_path, "frames") video_path = os.path.join(output_path, "video.mp4") os.makedirs(frames_path, exist_ok=True) # process if mode == "Fast" or mode == "Balanced": tracking_window_size = 0 ebsynth_config = { "minimum_patch_size": minimum_patch_size, "threads_per_block": 8, "num_iter": num_iter, "gpu_id": 0, "guide_weight": guide_weight, "initialize": initialize, "tracking_window_size": tracking_window_size, } if mode == "Fast": FastModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path) elif mode == "Balanced": BalancedModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path) elif mode == "Accurate": AccurateModeRunner().run(frames_guide, frames_style, batch_size=batch_size, window_size=window_size, ebsynth_config=ebsynth_config, save_path=frames_path) # output try: fps = int(fps) except: fps = get_video_fps(video_style) if video_style is not None else 30 print("Fps:", fps) print("Saving video...") video_path = save_video(frames_path, video_path, num_frames=len(frames_style), fps=fps) print("Success!") print("Your frames are here:", frames_path) print("Your video is here:", video_path) return output_path, fps, video_path class KeyFrameMatcher: def __init__(self): pass def extract_number_from_filename(self, file_name): result = [] number = -1 for i in file_name: if ord(i)>=ord("0") and ord(i)<=ord("9"): if number == -1: number = 0 number = number*10 + ord(i) - ord("0") else: if number != -1: result.append(number) number = -1 if number != -1: result.append(number) result = tuple(result) return result def extract_number_from_filenames(self, file_names): numbers = [self.extract_number_from_filename(file_name) for file_name in file_names] min_length = min(len(i) for i in numbers) for i in range(min_length-1, -1, -1): if len(set(number[i] for number in numbers))==len(file_names): return [number[i] for number in numbers] return list(range(len(file_names))) def match_using_filename(self, file_names_a, file_names_b): file_names_b_set = set(file_names_b) matched_file_name = [] for file_name in file_names_a: if file_name not in file_names_b_set: matched_file_name.append(None) else: matched_file_name.append(file_name) return matched_file_name def match_using_numbers(self, file_names_a, file_names_b): numbers_a = self.extract_number_from_filenames(file_names_a) numbers_b = self.extract_number_from_filenames(file_names_b) numbers_b_dict = {number: file_name for number, file_name in zip(numbers_b, file_names_b)} matched_file_name = [] for number in numbers_a: if number in numbers_b_dict: matched_file_name.append(numbers_b_dict[number]) else: matched_file_name.append(None) return matched_file_name def match_filenames(self, file_names_a, file_names_b): matched_file_name = self.match_using_filename(file_names_a, file_names_b) if sum([i is not None for i in matched_file_name]) > 0: return matched_file_name matched_file_name = self.match_using_numbers(file_names_a, file_names_b) return matched_file_name def detect_frames(frames_path, keyframes_path): if not os.path.exists(frames_path) and not os.path.exists(keyframes_path): return "Please input the directory of guide video and rendered frames" elif not os.path.exists(frames_path): return "Please input the directory of guide video" elif not os.path.exists(keyframes_path): return "Please input the directory of rendered frames" frames = [os.path.split(i)[-1] for i in search_for_images(frames_path)] keyframes = [os.path.split(i)[-1] for i in search_for_images(keyframes_path)] if len(frames)==0: return f"No images detected in {frames_path}" if len(keyframes)==0: return f"No images detected in {keyframes_path}" matched_keyframes = KeyFrameMatcher().match_filenames(frames, keyframes) max_filename_length = max([len(i) for i in frames]) if sum([i is not None for i in matched_keyframes])==0: message = "" for frame, matched_keyframe in zip(frames, matched_keyframes): message += frame + " " * (max_filename_length - len(frame) + 1) message += "--> No matched keyframes\n" else: message = "" for frame, matched_keyframe in zip(frames, matched_keyframes): message += frame + " " * (max_filename_length - len(frame) + 1) if matched_keyframe is None: message += "--> [to be rendered]\n" else: message += f"--> {matched_keyframe}\n" return message def check_input_for_interpolating(frames_path, keyframes_path): # search for images frames = [os.path.split(i)[-1] for i in search_for_images(frames_path)] keyframes = [os.path.split(i)[-1] for i in search_for_images(keyframes_path)] # match frames matched_keyframes = KeyFrameMatcher().match_filenames(frames, keyframes) file_list = [file_name for file_name in matched_keyframes if file_name is not None] index_style = [i for i, file_name in enumerate(matched_keyframes) if file_name is not None] frames_guide = VideoData(None, frames_path) frames_style = VideoData(None, keyframes_path, file_list=file_list) # match shape message = "" height_guide, width_guide = frames_guide.shape() height_style, width_style = frames_style.shape() if height_guide != height_style or width_guide != width_style: message += f"The shape of frames mismatches. The rendered keyframes will be resized to (height: {height_guide}, width: {width_guide})\n" frames_style.set_shape(height_guide, width_guide) return frames_guide, frames_style, index_style, message def interpolate_video( frames_path, keyframes_path, output_path, fps, batch_size, tracking_window_size, minimum_patch_size, num_iter, guide_weight, initialize, progress = None, ): # input frames_guide, frames_style, index_style, message = check_input_for_interpolating(frames_path, keyframes_path) if len(message) > 0: print(message) # output if output_path == "": output_path = os.path.join(keyframes_path, "output") os.makedirs(output_path, exist_ok=True) print("No valid output_path. Your video will be saved here:", output_path) elif not os.path.exists(output_path): os.makedirs(output_path, exist_ok=True) print("Your video will be saved here:", output_path) output_frames_path = os.path.join(output_path, "frames") output_video_path = os.path.join(output_path, "video.mp4") os.makedirs(output_frames_path, exist_ok=True) # process ebsynth_config = { "minimum_patch_size": minimum_patch_size, "threads_per_block": 8, "num_iter": num_iter, "gpu_id": 0, "guide_weight": guide_weight, "initialize": initialize, "tracking_window_size": tracking_window_size } if len(index_style)==1: InterpolationModeSingleFrameRunner().run(frames_guide, frames_style, index_style, batch_size=batch_size, ebsynth_config=ebsynth_config, save_path=output_frames_path) else: InterpolationModeRunner().run(frames_guide, frames_style, index_style, batch_size=batch_size, ebsynth_config=ebsynth_config, save_path=output_frames_path) try: fps = int(fps) except: fps = 30 print("Fps:", fps) print("Saving video...") video_path = save_video(output_frames_path, output_video_path, num_frames=len(frames_guide), fps=fps) print("Success!") print("Your frames are here:", output_frames_path) print("Your video is here:", video_path) return output_path, fps, video_path def on_ui_tabs(): with gr.Blocks(analytics_enabled=False) as ui_component: with gr.Tab("Blend"): gr.Markdown(""" # Blend Given a guide video and a style video, this algorithm will make the style video fluent according to the motion features of the guide video. Click [here](https://github.com/Artiprocher/sd-webui-fastblend/assets/35051019/208d902d-6aba-48d7-b7d5-cd120ebd306d) to see the example. Note that this extension doesn't support long videos. Please use short videos (e.g., several seconds). The algorithm is mainly designed for 512*512 resolution. Please use a larger `Minimum patch size` for higher resolution. """) with gr.Row(): with gr.Column(): with gr.Tab("Guide video"): video_guide = gr.Video(label="Guide video") with gr.Tab("Guide video (images format)"): video_guide_folder = gr.Textbox(label="Guide video (images format)", value="") with gr.Column(): with gr.Tab("Style video"): video_style = gr.Video(label="Style video") with gr.Tab("Style video (images format)"): video_style_folder = gr.Textbox(label="Style video (images format)", value="") with gr.Column(): output_path = gr.Textbox(label="Output directory", value="", placeholder="Leave empty to use the directory of style video") fps = gr.Textbox(label="Fps", value="", placeholder="Leave empty to use the default fps") video_output = gr.Video(label="Output video", interactive=False, show_share_button=True) btn = gr.Button(value="Blend") with gr.Row(): with gr.Column(): gr.Markdown("# Settings") mode = gr.Radio(["Fast", "Balanced", "Accurate"], label="Inference mode", value="Fast", interactive=True) window_size = gr.Slider(label="Sliding window size", value=15, minimum=1, maximum=1000, step=1, interactive=True) batch_size = gr.Slider(label="Batch size", value=8, minimum=1, maximum=128, step=1, interactive=True) tracking_window_size = gr.Slider(label="Tracking window size (only for accurate mode)", value=0, minimum=0, maximum=10, step=1, interactive=True) gr.Markdown("## Advanced Settings") minimum_patch_size = gr.Slider(label="Minimum patch size (odd number)", value=5, minimum=5, maximum=99, step=2, interactive=True) num_iter = gr.Slider(label="Number of iterations", value=5, minimum=1, maximum=10, step=1, interactive=True) guide_weight = gr.Slider(label="Guide weight", value=10.0, minimum=0.0, maximum=100.0, step=0.1, interactive=True) initialize = gr.Radio(["identity", "random"], label="NNF initialization", value="identity", interactive=True) with gr.Column(): gr.Markdown(""" # Reference * Output directory: the directory to save the video. * Inference mode |Mode|Time|Memory|Quality|Frame by frame output|Description| |-|-|-|-|-|-| |Fast|■|■■■|■■|No|Blend the frames using a tree-like data structure, which requires much RAM but is fast.| |Balanced|■■|■|■■|Yes|Blend the frames naively.| |Accurate|■■■|■|■■■|Yes|Blend the frames and align them together for higher video quality. When [batch size] >= [sliding window size] * 2 + 1, the performance is the best.| * Sliding window size: our algorithm will blend the frames in a sliding windows. If the size is n, each frame will be blended with the last n frames and the next n frames. A large sliding window can make the video fluent but sometimes smoggy. * Batch size: a larger batch size makes the program faster but requires more VRAM. * Tracking window size (only for accurate mode): The size of window in which our algorithm tracks moving objects. Empirically, 1 is enough. * Advanced settings * Minimum patch size (odd number): the minimum patch size used for patch matching. (Default: 5) * Number of iterations: the number of iterations of patch matching. (Default: 5) * Guide weight: a parameter that determines how much motion feature applied to the style video. (Default: 10) * NNF initialization: how to initialize the NNF (Nearest Neighbor Field). (Default: identity) """) btn.click( smooth_video, inputs=[ video_guide, video_guide_folder, video_style, video_style_folder, mode, window_size, batch_size, tracking_window_size, output_path, fps, minimum_patch_size, num_iter, guide_weight, initialize ], outputs=[output_path, fps, video_output] ) with gr.Tab("Interpolate"): gr.Markdown(""" # Interpolate Given a guide video and some rendered keyframes, this algorithm will render the remaining frames. Click [here](https://github.com/Artiprocher/sd-webui-fastblend/assets/35051019/3490c5b4-8f67-478f-86de-f9adc2ace16a) to see the example. The algorithm is experimental and is only tested for 512*512 resolution. """) with gr.Row(): with gr.Column(): with gr.Row(): with gr.Column(): video_guide_folder_ = gr.Textbox(label="Guide video (images format)", value="") with gr.Column(): rendered_keyframes_ = gr.Textbox(label="Rendered keyframes (images format)", value="") with gr.Row(): detected_frames = gr.Textbox(label="Detected frames", value="Please input the directory of guide video and rendered frames", lines=9, max_lines=9, interactive=False) video_guide_folder_.change(detect_frames, inputs=[video_guide_folder_, rendered_keyframes_], outputs=detected_frames) rendered_keyframes_.change(detect_frames, inputs=[video_guide_folder_, rendered_keyframes_], outputs=detected_frames) with gr.Column(): output_path_ = gr.Textbox(label="Output directory", value="", placeholder="Leave empty to use the directory of rendered keyframes") fps_ = gr.Textbox(label="Fps", value="", placeholder="Leave empty to use the default fps") video_output_ = gr.Video(label="Output video", interactive=False, show_share_button=True) btn_ = gr.Button(value="Interpolate") with gr.Row(): with gr.Column(): gr.Markdown("# Settings") batch_size_ = gr.Slider(label="Batch size", value=8, minimum=1, maximum=128, step=1, interactive=True) tracking_window_size_ = gr.Slider(label="Tracking window size", value=0, minimum=0, maximum=10, step=1, interactive=True) gr.Markdown("## Advanced Settings") minimum_patch_size_ = gr.Slider(label="Minimum patch size (odd number, larger is better)", value=15, minimum=5, maximum=99, step=2, interactive=True) num_iter_ = gr.Slider(label="Number of iterations", value=5, minimum=1, maximum=10, step=1, interactive=True) guide_weight_ = gr.Slider(label="Guide weight", value=10.0, minimum=0.0, maximum=100.0, step=0.1, interactive=True) initialize_ = gr.Radio(["identity", "random"], label="NNF initialization", value="identity", interactive=True) with gr.Column(): gr.Markdown(""" # Reference * Output directory: the directory to save the video. * Batch size: a larger batch size makes the program faster but requires more VRAM. * Tracking window size (only for accurate mode): The size of window in which our algorithm tracks moving objects. Empirically, 1 is enough. * Advanced settings * Minimum patch size (odd number): the minimum patch size used for patch matching. **This parameter should be larger than that in blending. (Default: 15)** * Number of iterations: the number of iterations of patch matching. (Default: 5) * Guide weight: a parameter that determines how much motion feature applied to the style video. (Default: 10) * NNF initialization: how to initialize the NNF (Nearest Neighbor Field). (Default: identity) """) btn_.click( interpolate_video, inputs=[ video_guide_folder_, rendered_keyframes_, output_path_, fps_, batch_size_, tracking_window_size_, minimum_patch_size_, num_iter_, guide_weight_, initialize_, ], outputs=[output_path_, fps_, video_output_] ) return [(ui_component, "FastBlend", "FastBlend_ui")]