from .base_prompter import BasePrompter from ..models.model_manager import ModelManager from ..models import SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3 from transformers import CLIPTokenizer, T5TokenizerFast import os, torch class SD3Prompter(BasePrompter): def __init__( self, tokenizer_1_path=None, tokenizer_2_path=None, tokenizer_3_path=None ): if tokenizer_1_path is None: base_path = os.path.dirname(os.path.dirname(__file__)) tokenizer_1_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion_3/tokenizer_1") if tokenizer_2_path is None: base_path = os.path.dirname(os.path.dirname(__file__)) tokenizer_2_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion_3/tokenizer_2") if tokenizer_3_path is None: base_path = os.path.dirname(os.path.dirname(__file__)) tokenizer_3_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion_3/tokenizer_3") super().__init__() self.tokenizer_1 = CLIPTokenizer.from_pretrained(tokenizer_1_path) self.tokenizer_2 = CLIPTokenizer.from_pretrained(tokenizer_2_path) self.tokenizer_3 = T5TokenizerFast.from_pretrained(tokenizer_3_path) self.text_encoder_1: SD3TextEncoder1 = None self.text_encoder_2: SD3TextEncoder2 = None self.text_encoder_3: SD3TextEncoder3 = None def fetch_models(self, text_encoder_1: SD3TextEncoder1 = None, text_encoder_2: SD3TextEncoder2 = None, text_encoder_3: SD3TextEncoder3 = None): self.text_encoder_1 = text_encoder_1 self.text_encoder_2 = text_encoder_2 self.text_encoder_3 = text_encoder_3 def encode_prompt_using_clip(self, prompt, text_encoder, tokenizer, max_length, device): input_ids = tokenizer( prompt, return_tensors="pt", padding="max_length", max_length=max_length, truncation=True ).input_ids.to(device) pooled_prompt_emb, prompt_emb = text_encoder(input_ids) return pooled_prompt_emb, prompt_emb def encode_prompt_using_t5(self, prompt, text_encoder, tokenizer, max_length, device): input_ids = tokenizer( prompt, return_tensors="pt", padding="max_length", max_length=max_length, truncation=True, add_special_tokens=True, ).input_ids.to(device) prompt_emb = text_encoder(input_ids) prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) return prompt_emb def encode_prompt( self, prompt, positive=True, device="cuda" ): prompt = self.process_prompt(prompt, positive=positive) # CLIP pooled_prompt_emb_1, prompt_emb_1 = self.encode_prompt_using_clip(prompt, self.text_encoder_1, self.tokenizer_1, 77, device) pooled_prompt_emb_2, prompt_emb_2 = self.encode_prompt_using_clip(prompt, self.text_encoder_2, self.tokenizer_2, 77, device) # T5 if self.text_encoder_3 is None: prompt_emb_3 = torch.zeros((prompt_emb_1.shape[0], 256, 4096), dtype=prompt_emb_1.dtype, device=device) else: prompt_emb_3 = self.encode_prompt_using_t5(prompt, self.text_encoder_3, self.tokenizer_3, 256, device) prompt_emb_3 = prompt_emb_3.to(prompt_emb_1.dtype) # float32 -> float16 # Merge prompt_emb = torch.cat([ torch.nn.functional.pad(torch.cat([prompt_emb_1, prompt_emb_2], dim=-1), (0, 4096 - 768 - 1280)), prompt_emb_3 ], dim=-2) pooled_prompt_emb = torch.cat([pooled_prompt_emb_1, pooled_prompt_emb_2], dim=-1) return prompt_emb, pooled_prompt_emb