from .base_prompter import BasePrompter, tokenize_long_prompt from ..models.model_manager import ModelManager, load_state_dict, search_for_embeddings from ..models import SDTextEncoder from transformers import CLIPTokenizer import torch, os class SDPrompter(BasePrompter): def __init__(self, tokenizer_path=None): if tokenizer_path is None: base_path = os.path.dirname(os.path.dirname(__file__)) tokenizer_path = os.path.join(base_path, "tokenizer_configs/stable_diffusion/tokenizer") super().__init__() self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path) self.text_encoder: SDTextEncoder = None self.textual_inversion_dict = {} self.keyword_dict = {} def fetch_models(self, text_encoder: SDTextEncoder = None): self.text_encoder = text_encoder def add_textual_inversions_to_model(self, textual_inversion_dict, text_encoder): dtype = next(iter(text_encoder.parameters())).dtype state_dict = text_encoder.token_embedding.state_dict() token_embeddings = [state_dict["weight"]] for keyword in textual_inversion_dict: _, embeddings = textual_inversion_dict[keyword] token_embeddings.append(embeddings.to(dtype=dtype, device=token_embeddings[0].device)) token_embeddings = torch.concat(token_embeddings, dim=0) state_dict["weight"] = token_embeddings text_encoder.token_embedding = torch.nn.Embedding(token_embeddings.shape[0], token_embeddings.shape[1]) text_encoder.token_embedding = text_encoder.token_embedding.to(dtype=dtype, device=token_embeddings[0].device) text_encoder.token_embedding.load_state_dict(state_dict) def add_textual_inversions_to_tokenizer(self, textual_inversion_dict, tokenizer): additional_tokens = [] for keyword in textual_inversion_dict: tokens, _ = textual_inversion_dict[keyword] additional_tokens += tokens self.keyword_dict[keyword] = " " + " ".join(tokens) + " " tokenizer.add_tokens(additional_tokens) def load_textual_inversions(self, model_paths): for model_path in model_paths: keyword = os.path.splitext(os.path.split(model_path)[-1])[0] state_dict = load_state_dict(model_path) # Search for embeddings for embeddings in search_for_embeddings(state_dict): if len(embeddings.shape) == 2 and embeddings.shape[1] == 768: tokens = [f"{keyword}_{i}" for i in range(embeddings.shape[0])] self.textual_inversion_dict[keyword] = (tokens, embeddings) self.add_textual_inversions_to_model(self.textual_inversion_dict, self.text_encoder) self.add_textual_inversions_to_tokenizer(self.textual_inversion_dict, self.tokenizer) def encode_prompt(self, prompt, clip_skip=1, device="cuda", positive=True): prompt = self.process_prompt(prompt, positive=positive) for keyword in self.keyword_dict: if keyword in prompt: print(f"Textual inversion {keyword} is enabled.") prompt = prompt.replace(keyword, self.keyword_dict[keyword]) input_ids = tokenize_long_prompt(self.tokenizer, prompt).to(device) prompt_emb = self.text_encoder(input_ids, clip_skip=clip_skip) prompt_emb = prompt_emb.reshape((1, prompt_emb.shape[0]*prompt_emb.shape[1], -1)) return prompt_emb