from ..patch_match import PyramidPatchMatcher import os import numpy as np from PIL import Image from tqdm import tqdm class AccurateModeRunner: def __init__(self): pass def run(self, frames_guide, frames_style, batch_size, window_size, ebsynth_config, desc="Accurate Mode", save_path=None): patch_match_engine = PyramidPatchMatcher( image_height=frames_style[0].shape[0], image_width=frames_style[0].shape[1], channel=3, use_mean_target_style=True, **ebsynth_config ) # run n = len(frames_style) for target in tqdm(range(n), desc=desc): l, r = max(target - window_size, 0), min(target + window_size + 1, n) remapped_frames = [] for i in range(l, r, batch_size): j = min(i + batch_size, r) source_guide = np.stack([frames_guide[source] for source in range(i, j)]) target_guide = np.stack([frames_guide[target]] * (j - i)) source_style = np.stack([frames_style[source] for source in range(i, j)]) _, target_style = patch_match_engine.estimate_nnf(source_guide, target_guide, source_style) remapped_frames.append(target_style) frame = np.concatenate(remapped_frames, axis=0).mean(axis=0) frame = frame.clip(0, 255).astype("uint8") if save_path is not None: Image.fromarray(frame).save(os.path.join(save_path, "%05d.png" % target))