Spaces:
Sleeping
Sleeping
File size: 17,771 Bytes
98e07ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
from __future__ import annotations
import base64
import html
import os
import re
from urllib import parse
import json
import markdown
from gradio.components import Chatbot as ChatBotBase
from modelscope_agent.action_parser import MRKLActionParser
from PIL import Image
ALREADY_CONVERTED_MARK = '<!-- ALREADY CONVERTED BY PARSER. -->'
# 图片本地路径转换为 base64 格式
def covert_image_to_base64(image_path):
# 获得文件后缀名
ext = image_path.split('.')[-1]
if ext not in ['gif', 'jpeg', 'png']:
ext = 'jpeg'
with open(image_path, 'rb') as image_file:
# Read the file
encoded_string = base64.b64encode(image_file.read())
# Convert bytes to string
base64_data = encoded_string.decode('utf-8')
# 生成base64编码的地址
base64_url = f'data:image/{ext};base64,{base64_data}'
return base64_url
def convert_url(text, new_filename):
# Define the pattern to search for
# This pattern captures the text inside the square brackets, the path, and the filename
pattern = r'!\[([^\]]+)\]\(([^)]+)\)'
# Define the replacement pattern
# \1 is a backreference to the text captured by the first group ([^\]]+)
replacement = rf'![\1]({new_filename})'
# Replace the pattern in the text with the replacement
return re.sub(pattern, replacement, text)
def format_cover_html(configuration, bot_avatar_path):
if bot_avatar_path:
image_src = covert_image_to_base64(bot_avatar_path)
else:
image_src = '//img.alicdn.com/imgextra/i3/O1CN01YPqZFO1YNZerQfSBk_!!6000000003047-0-tps-225-225.jpg'
return f"""
<div class="bot_cover">
<div class="bot_avatar">
<img src={image_src} />
</div>
<div class="bot_name">{configuration.get("name", "")}</div>
<div class="bot_desp">{configuration.get("description", "")}</div>
</div>
"""
def format_goto_publish_html(label, zip_url, agent_user_params, disable=False):
if disable:
return f"""<div class="publish_link_container">
<a class="disabled">{label}</a>
</div>
"""
else:
params = {'AGENT_URL': zip_url}
params.update(agent_user_params)
template = 'modelscope/agent_template'
params_str = json.dumps(params)
link_url = f'https://www.modelscope.cn/studios/fork?target={template}&overwriteEnv={parse.quote(params_str)}'
return f"""
<div class="publish_link_container">
<a href="{link_url}" target="_blank">{label}</a>
</div>
"""
class ChatBot(ChatBotBase):
def normalize_markdown(self, bot_message):
lines = bot_message.split('\n')
normalized_lines = []
inside_list = False
for i, line in enumerate(lines):
if re.match(r'^(\d+\.|-|\*|\+)\s', line.strip()):
if not inside_list and i > 0 and lines[i - 1].strip() != '':
normalized_lines.append('')
inside_list = True
normalized_lines.append(line)
elif inside_list and line.strip() == '':
if i < len(lines) - 1 and not re.match(r'^(\d+\.|-|\*|\+)\s',
lines[i + 1].strip()):
normalized_lines.append(line)
continue
else:
inside_list = False
normalized_lines.append(line)
return '\n'.join(normalized_lines)
def convert_markdown(self, bot_message):
if bot_message.count('```') % 2 != 0:
bot_message += '\n```'
bot_message = self.normalize_markdown(bot_message)
result = markdown.markdown(
bot_message,
extensions=[
'toc', 'extra', 'tables', 'codehilite',
'markdown_cjk_spacing.cjk_spacing', 'pymdownx.magiclink'
],
extension_configs={
'markdown_katex': {
'no_inline_svg': True, # fix for WeasyPrint
'insert_fonts_css': True,
},
'codehilite': {
'linenums': False,
'guess_lang': True
},
'mdx_truly_sane_lists': {
'nested_indent': 2,
'truly_sane': True,
}
})
result = ''.join(result)
return result
@staticmethod
def prompt_parse(message):
output = ''
if 'Thought' in message:
if 'Action' in message or 'Action Input:' in message:
re_pattern_thought = re.compile(
pattern=r'([\s\S]+)Thought:([\s\S]+)Action:')
res = re_pattern_thought.search(message)
if res is None:
re_pattern_thought_only = re.compile(
pattern=r'Thought:([\s\S]+)Action:')
res = re_pattern_thought_only.search(message)
llm_result = ''
else:
llm_result = res.group(1).strip()
action_thought_result = res.group(2).strip()
re_pattern_action = re.compile(
pattern=
r'Action:([\s\S]+)Action Input:([\s\S]+)<\|startofexec\|>')
res = re_pattern_action.search(message)
if res is None:
action, action_parameters = MRKLActionParser(
).parse_response(message)
else:
action = res.group(1).strip()
action_parameters = res.group(2)
action_result = json.dumps({
'api_name': action,
'parameters': action_parameters
})
output += f'{llm_result}\n{action_thought_result}\n<|startofthink|>\n{action_result}\n<|endofthink|>\n'
if '<|startofexec|>' in message:
re_pattern3 = re.compile(
pattern=r'<\|startofexec\|>([\s\S]+)<\|endofexec\|>')
res3 = re_pattern3.search(message)
observation = res3.group(1).strip()
output += f'\n<|startofexec|>\n{observation}\n<|endofexec|>\n'
if 'Final Answer' in message:
re_pattern2 = re.compile(
pattern=r'Thought:([\s\S]+)Final Answer:([\s\S]+)')
res2 = re_pattern2.search(message)
# final_thought_result = res2.group(1).strip()
final_answer_result = res2.group(2).strip()
output += f'{final_answer_result}\n'
if output == '':
return message
print(output)
return output
else:
return message
def convert_bot_message(self, bot_message):
bot_message = ChatBot.prompt_parse(bot_message)
# print('processed bot message----------')
# print(bot_message)
# print('processed bot message done')
start_pos = 0
result = ''
find_json_pattern = re.compile(r'{[\s\S]+}')
START_OF_THINK_TAG, END_OF_THINK_TAG = '<|startofthink|>', '<|endofthink|>'
START_OF_EXEC_TAG, END_OF_EXEC_TAG = '<|startofexec|>', '<|endofexec|>'
while start_pos < len(bot_message):
try:
start_of_think_pos = bot_message.index(START_OF_THINK_TAG,
start_pos)
end_of_think_pos = bot_message.index(END_OF_THINK_TAG,
start_pos)
if start_pos < start_of_think_pos:
result += self.convert_markdown(
bot_message[start_pos:start_of_think_pos])
think_content = bot_message[start_of_think_pos
+ len(START_OF_THINK_TAG
):end_of_think_pos].strip()
json_content = find_json_pattern.search(think_content)
think_content = json_content.group(
) if json_content else think_content
try:
think_node = json.loads(think_content)
plugin_name = think_node.get(
'plugin_name',
think_node.get('plugin',
think_node.get('api_name', 'unknown')))
summary = f'选择插件【{plugin_name}】,调用处理中...'
del think_node['url']
# think_node.pop('url', None)
detail = f'```json\n\n{json.dumps(think_node, indent=3, ensure_ascii=False)}\n\n```'
except Exception:
summary = '思考中...'
detail = think_content
# traceback.print_exc()
# detail += traceback.format_exc()
result += '<details> <summary>' + summary + '</summary>' + self.convert_markdown(
detail) + '</details>'
# print(f'detail:{detail}')
start_pos = end_of_think_pos + len(END_OF_THINK_TAG)
except Exception:
# result += traceback.format_exc()
break
# continue
try:
start_of_exec_pos = bot_message.index(START_OF_EXEC_TAG,
start_pos)
end_of_exec_pos = bot_message.index(END_OF_EXEC_TAG, start_pos)
# print(start_of_exec_pos)
# print(end_of_exec_pos)
# print(bot_message[start_of_exec_pos:end_of_exec_pos])
# print('------------------------')
if start_pos < start_of_exec_pos:
result += self.convert_markdown(
bot_message[start_pos:start_of_think_pos])
exec_content = bot_message[start_of_exec_pos
+ len(START_OF_EXEC_TAG
):end_of_exec_pos].strip()
try:
summary = '完成插件调用.'
detail = f'```json\n\n{exec_content}\n\n```'
except Exception:
pass
result += '<details> <summary>' + summary + '</summary>' + self.convert_markdown(
detail) + '</details>'
start_pos = end_of_exec_pos + len(END_OF_EXEC_TAG)
except Exception:
# result += traceback.format_exc()
continue
if start_pos < len(bot_message):
result += self.convert_markdown(bot_message[start_pos:])
result += ALREADY_CONVERTED_MARK
return result
def convert_bot_message_for_qwen(self, bot_message):
start_pos = 0
result = ''
find_json_pattern = re.compile(r'{[\s\S]+}')
ACTION = 'Action:'
ACTION_INPUT = 'Action Input'
OBSERVATION = 'Observation'
RESULT_START = '<result>'
RESULT_END = '</result>'
while start_pos < len(bot_message):
try:
action_pos = bot_message.index(ACTION, start_pos)
action_input_pos = bot_message.index(ACTION_INPUT, start_pos)
result += self.convert_markdown(
bot_message[start_pos:action_pos])
# Action: image_gen
# Action Input
# {"text": "金庸武侠 世界", "resolution": "1280x720"}
# Observation: <result>![IMAGEGEN](https://dashscope-result-sh.oss-cn-shanghai.aliyuncs.com/1d/e9/20231116/723609ee/d046d2d9-0c95-420b-9467-f0e831f5e2b7-1.png?Expires=1700227460&OSSAccessKeyId=LTAI5tQZd8AEcZX6KZV4G8qL&Signature=R0PlEazQF9uBD%2Fh9tkzOkJMGyg8%3D)<result> # noqa E501
action_name = bot_message[action_pos
+ len(ACTION
):action_input_pos].strip()
# action_start action_end 使用 Action Input 到 Observation 之间
action_input_end = bot_message[action_input_pos:].index(
OBSERVATION) - 1
action_input = bot_message[action_input_pos:action_input_pos
+ action_input_end].strip()
is_json = find_json_pattern.search(action_input)
if is_json:
action_input = is_json.group()
else:
action_input = re.sub(r'^Action Input[:]?[\s]*', '',
action_input)
summary = f'调用工具 {action_name}'
if is_json:
detail = f'```json\n\n{json.dumps(json.loads(action_input), indent=4, ensure_ascii=False)}\n\n```'
else:
detail = action_input
result += '<details> <summary>' + summary + '</summary>' + self.convert_markdown(
detail) + '</details>'
start_pos = action_input_pos + action_input_end + 1
try:
observation_pos = bot_message.index(OBSERVATION, start_pos)
idx = observation_pos + len(OBSERVATION)
obs_message = bot_message[idx:]
observation_start_id = obs_message.index(
RESULT_START) + len(RESULT_START)
observation_end_idx = obs_message.index(RESULT_END)
summary = '完成调用'
exec_content = obs_message[
observation_start_id:observation_end_idx]
detail = f'```\n\n{exec_content}\n\n```'
start_pos = idx + observation_end_idx + len(RESULT_END)
except Exception:
summary = '执行中...'
detail = ''
exec_content = None
result += '<details> <summary>' + summary + '</summary>' + self.convert_markdown(
detail) + '</details>'
if exec_content is not None and '[IMAGEGEN]' in exec_content:
# convert local file to base64
re_pattern = re.compile(pattern=r'!\[[^\]]+\]\(([^)]+)\)')
res = re_pattern.search(exec_content)
if res:
image_path = res.group(1).strip()
if os.path.isfile(image_path):
exec_content = convert_url(
exec_content,
covert_image_to_base64(image_path))
result += self.convert_markdown(f'{exec_content}')
except Exception:
# import traceback; traceback.print_exc()
result += self.convert_markdown(bot_message[start_pos:])
start_pos = len(bot_message[start_pos:])
break
result += ALREADY_CONVERTED_MARK
return result
def postprocess(
self,
message_pairs: list[list[str | tuple[str] | tuple[str, str] | None]
| tuple],
) -> list[list[str | dict | None]]:
"""
Parameters:
message_pairs: List of lists representing the message and response pairs.
Each message and response should be a string, which may be in Markdown format.
It can also be a tuple whose first element is a string or pathlib.
Path filepath or URL to an image/video/audio, and second (optional) element is the alt text,
in which case the media file is displayed. It can also be None, in which case that message is not displayed.
Returns:
List of lists representing the message and response. Each message and response will be a string of HTML,
or a dictionary with media information. Or None if the message is not to be displayed.
"""
if message_pairs is None:
return []
processed_messages = []
for message_pair in message_pairs:
assert isinstance(
message_pair, (tuple, list)
), f'Expected a list of lists or list of tuples. Received: {message_pair}'
assert (
len(message_pair) == 2
), f'Expected a list of lists of length 2 or list of tuples of length 2. Received: {message_pair}'
if isinstance(message_pair[0], tuple) or isinstance(
message_pair[1], tuple):
processed_messages.append([
self._postprocess_chat_messages(message_pair[0]),
self._postprocess_chat_messages(message_pair[1]),
])
else:
# 处理不是元组的情况
user_message, bot_message = message_pair
if user_message and not user_message.endswith(
ALREADY_CONVERTED_MARK):
convert_md = self.convert_markdown(
html.escape(user_message))
user_message = f'{convert_md}' + ALREADY_CONVERTED_MARK
if bot_message and not bot_message.endswith(
ALREADY_CONVERTED_MARK):
# bot_message = self.convert_bot_message(bot_message)
bot_message = self.convert_bot_message_for_qwen(
bot_message)
processed_messages.append([
user_message,
bot_message,
])
return processed_messages
|