Spaces:
Running
on
A10G
Running
on
A10G
File size: 15,456 Bytes
239f98e 01c8c4b 239f98e 01c8c4b 239f98e f089029 239f98e f089029 239f98e b0ffd79 239f98e eedbb25 239f98e 1b1eb65 239f98e 881e138 4112985 239f98e c693371 239f98e c693371 239f98e c693371 f089029 c693371 239f98e c693371 90343a6 c693371 239f98e c693371 239f98e c693371 239f98e c693371 239f98e c693371 f089029 239f98e c693371 239f98e c693371 239f98e c693371 239f98e c693371 239f98e 7c8010b f089029 239f98e c693371 239f98e c693371 239f98e c693371 239f98e c693371 239f98e c693371 239f98e c693371 239f98e f089029 239f98e ad688f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
##!/usr/bin/python3
# -*- coding: utf-8 -*-
# @Time : 2023-06-01
# @Author : ashui(Binghui Chen)
from sympy import im
from versions import RELEASE_NOTE, VERSION
import time
import cv2
import gradio as gr
import numpy as np
import random
import math
import uuid
import torch
from torch import autocast
from src.util import resize_image, HWC3, call_with_messages, upload_np_2_oss
from src.virtualmodel import call_virtualmodel
from src.person_detect import call_person_detect
from src.background_generation import call_bg_genration
import sys, os
from PIL import Image, ImageFilter, ImageOps, ImageDraw
from segment_anything import SamPredictor, sam_model_registry
mobile_sam = sam_model_registry['vit_h'](checkpoint='models/sam_vit_h_4b8939.pth').to("cuda")
mobile_sam.eval()
mobile_predictor = SamPredictor(mobile_sam)
colors = [(255, 0, 0), (0, 255, 0)]
markers = [1, 5]
# - - - - - examples - - - - - #
# 输入图地址, 文本, 背景图地址, index, []
image_examples = [
["imgs/000.jpg", "A young woman in short sleeves shows off a mobile phone", None, 0, []],
["imgs/001.jpg", "A young woman wears short sleeves, her hand is holding a bottle.", None, 1, []],
["imgs/003.png", "A woman is wearing a black suit against a blue background", "imgs/003_bg.jpg", 2, []],
["imgs/002.png", "A young woman poses in a dress, she stands in front of a blue background", "imgs/002_bg.png", 3, []],
["imgs/bg_gen/base_imgs/1cdb9b1e6daea6a1b85236595d3e43d6.png", "water splash", None, 4, []],
["imgs/bg_gen/base_imgs/1cdb9b1e6daea6a1b85236595d3e43d6.png", "", "imgs/bg_gen/ref_imgs/df9a93ac2bca12696a9166182c4bf02ad9679aa5.jpg", 5, []],
["imgs/bg_gen/base_imgs/IMG_2941.png", "On the desert floor", None, 6, []],
["imgs/bg_gen/base_imgs/b2b1ed243364473e49d2e478e4f24413.png","White ground, white background, light coming in, Canon",None,7,[]],
]
img = "image_gallery/"
files = os.listdir(img)
files = sorted(files)
showcases = []
for idx, name in enumerate(files):
temp = os.path.join(os.path.dirname(__file__), img, name)
showcases.append(temp)
def process(input_image, original_image, original_mask, input_mask, selected_points, source_background, prompt, face_prompt):
if original_image is None:
raise gr.Error('Please upload the input image')
if (original_mask is None or len(selected_points)==0) and input_mask is None:
raise gr.Error("Please click the region where you want to keep unchanged, or upload a white-black Mask image where white color indicates region to be retained.")
# load example image
if isinstance(original_image, int):
image_name = image_examples[original_image][0]
original_image = cv2.imread(image_name)
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
if input_mask is not None:
H,W=original_image.shape[:2]
original_mask = cv2.resize(input_mask, (W, H))
else:
original_mask = np.clip(255 - original_mask, 0, 255).astype(np.uint8)
request_id = str(uuid.uuid4())
input_image_url = upload_np_2_oss(original_image, request_id+".png")
input_mask_url = upload_np_2_oss(original_mask, request_id+"_mask.png")
source_background_url = "" if source_background is None else upload_np_2_oss(source_background, request_id+"_bg.png")
# person detect: [[x1,y1,x2,y2,score],]
det_res = call_person_detect(input_image_url)
res = []
if len(det_res)>0:
if len(prompt)==0:
raise gr.Error('Please input the prompt')
res = call_virtualmodel(input_image_url, input_mask_url, source_background_url, prompt, face_prompt)
else:
###
if len(prompt)==0:
prompt=None
ref_image_url=None if source_background_url =='' else source_background_url
original_mask=original_mask[:,:,:1]
base_image=np.concatenate([original_image, original_mask],axis=2)
base_image_url=upload_np_2_oss(base_image, request_id+"_base.png")
res=call_bg_genration(base_image_url,ref_image_url,prompt,ref_prompt_weight=0.5)
return res, request_id, True
block = gr.Blocks(
css="css/style.css",
theme=gr.themes.Soft(
radius_size=gr.themes.sizes.radius_none,
text_size=gr.themes.sizes.text_md
)
).queue(concurrency_count=2)
with block:
with gr.Row():
with gr.Column():
gr.HTML(f"""
</br>
<div class="baselayout" style="text-shadow: white 0.01rem 0.01rem 0.4rem; position:fixed; z-index: 9999; top:0; left:0;right:0; background-size:100% 100%">
<h1 style="text-align:center; color:white; font-size:3rem; position: relative;"> ReplaceAnything (V{VERSION})</h1>
</div>
</br>
</br>
<div style="text-align: center;">
<h1 >ReplaceAnything as you want: Ultra-high quality content replacement</h1>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href=""></a>
<a href='https://aigcdesigngroup.github.io/replace-anything/'><img src='https://img.shields.io/badge/Project_Page-ReplaceAnything-green' alt='Project Page'></a>
<a href='https://github.com/AIGCDesignGroup/ReplaceAnything'><img src='https://img.shields.io/badge/Github-Repo-blue'></a>
</div>
</br>
<h3>AIGC techniques have attracted lots of attention recently. They have demonstrated strong capabilities in the areas of image editing, image generation and so on. We find that generating new contents while strictly keeping the identity of use-specified object unchanged is of great demand, yet challenging. To this end, we propose ReplaceAnything framework. It can be used in many scenes, such as human replacement, clothing replacement, background replacement, and so on.</h3>
<h5 style="margin: 0; color: red">If you found the project helpful, you can click a Star on Github to get the latest updates on the project.</h5>
</br>
</div>
""")
with gr.Tabs(elem_classes=["Tab"]):
with gr.TabItem("Image Gallery"):
gr.Gallery(value=showcases,
height=800,
columns=4,
object_fit="scale-down"
)
with gr.TabItem("Image Create"):
with gr.Accordion(label="🧭 Instructions:", open=True, elem_id="accordion"):
with gr.Row(equal_height=True):
gr.Markdown("""
- ⭐️ <b>step1:</b>Upload or select one image from Example
- ⭐️ <b>step2:</b>Click on Input-image to select the object to be retained (or upload a white-black Mask image, in which white color indicates the region you want to keep unchanged)
- ⭐️ <b>step3:</b>Input prompt or reference image (highly-recommended) for generating new contents
- ⭐️ <b>step4:</b>Click Run button
""")
with gr.Row():
with gr.Column():
with gr.Column(elem_id="Input"):
with gr.Row():
with gr.Tabs(elem_classes=["feedback"]):
with gr.TabItem("Input Image"):
input_image = gr.Image(type="numpy", label="input",scale=2, height=640)
original_image = gr.State(value=None,label="index")
original_mask = gr.State(value=None)
selected_points = gr.State([],label="click points")
with gr.Row(elem_id="Seg"):
radio = gr.Radio(['foreground', 'background'], label='Click to seg: ', value='foreground',scale=2)
undo_button = gr.Button('Undo seg', elem_id="btnSEG",scale=1)
prompt = gr.Textbox(label="Prompt", placeholder="Please input your prompt",value='',lines=1)
run_button = gr.Button("Run",elem_id="btn")
with gr.Accordion("More input params (highly-recommended)", open=False, elem_id="accordion1"):
with gr.Row(elem_id="Image"):
with gr.Tabs(elem_classes=["feedback1"]):
with gr.TabItem("Reference Image (Optional)"):
source_background = gr.Image(type="numpy", label="Background Image")
with gr.Tabs(elem_classes=["feedback1"]):
with gr.TabItem("User-specified Mask Image (Optional)"):
input_mask = gr.Image(type="numpy", label="Mask Image")
face_prompt = gr.Textbox(label="Face Prompt", value='good face, beautiful face, best quality')
with gr.Column():
with gr.Tabs(elem_classes=["feedback"]):
with gr.TabItem("Outputs"):
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True)
recommend=gr.Button("Recommend results to Image Gallery",elem_id="recBut")
request_id=gr.State(value="")
gallery_flag=gr.State(value=False)
with gr.Row():
with gr.Box():
def process_example(input_image, prompt, source_background, original_image, selected_points):
return input_image, prompt, source_background, original_image, []
example = gr.Examples(
label="Input Example",
examples=image_examples,
inputs=[input_image, prompt, source_background, original_image, selected_points],
outputs=[input_image, prompt, source_background, original_image, selected_points],
fn=process_example,
run_on_click=True,
examples_per_page=10
)
# once user upload an image, the original image is stored in `original_image`
def store_img(img):
# image upload is too slow
if min(img.shape[0], img.shape[1]) > 896:
img = resize_image(img, 896)
if max(img.shape[0], img.shape[1])*1.0/min(img.shape[0], img.shape[1])>2.0:
raise gr.Error('image aspect ratio cannot be larger than 2.0')
return img, img, [], None # when new image is uploaded, `selected_points` should be empty
input_image.upload(
store_img,
[input_image],
[input_image, original_image, selected_points, source_background]
)
# user click the image to get points, and show the points on the image
def segmentation(img, sel_pix):
# online show seg mask
points = []
labels = []
for p, l in sel_pix:
points.append(p)
labels.append(l)
mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img))
with torch.no_grad():
with autocast("cuda"):
masks, _, _ = mobile_predictor.predict(point_coords=np.array(points), point_labels=np.array(labels), multimask_output=False)
output_mask = np.ones((masks.shape[1], masks.shape[2], 3))*255
for i in range(3):
output_mask[masks[0] == True, i] = 0.0
mask_all = np.ones((masks.shape[1], masks.shape[2], 3))
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
mask_all[masks[0] == True, i] = color_mask[i]
masked_img = img / 255 * 0.3 + mask_all * 0.7
masked_img = masked_img*255
## draw points
for point, label in sel_pix:
cv2.drawMarker(masked_img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
return masked_img, output_mask
def get_point(img, sel_pix, point_type, evt: gr.SelectData):
if point_type == 'foreground':
sel_pix.append((evt.index, 1)) # append the foreground_point
elif point_type == 'background':
sel_pix.append((evt.index, 0)) # append the background_point
else:
sel_pix.append((evt.index, 1)) # default foreground_point
if isinstance(img, int):
image_name = image_examples[img][0]
img = cv2.imread(image_name)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# online show seg mask
masked_img, output_mask = segmentation(img, sel_pix)
return masked_img.astype(np.uint8), output_mask
input_image.select(
get_point,
[original_image, selected_points, radio],
[input_image, original_mask],
)
# undo the selected point
def undo_points(orig_img, sel_pix):
# draw points
output_mask = None
if len(sel_pix) != 0:
if isinstance(orig_img, int): # if orig_img is int, the image if select from examples
temp = cv2.imread(image_examples[orig_img][0])
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
else:
temp = orig_img.copy()
sel_pix.pop()
# online show seg mask
if len(sel_pix) !=0:
temp, output_mask = segmentation(temp, sel_pix)
return temp.astype(np.uint8), output_mask
else:
gr.Error("Nothing to Undo")
undo_button.click(
undo_points,
[original_image, selected_points],
[input_image, original_mask]
)
def upload_to_img_gallery(img, res, re_id, flag):
if flag:
gr.Info("Image uploading")
if isinstance(img, int):
image_name = image_examples[img][0]
img = cv2.imread(image_name)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
_ = upload_np_2_oss(img, name=re_id+"_ori.jpg", gallery=True)
for idx, r in enumerate(res):
r = cv2.imread(r['name'])
r = cv2.cvtColor(r, cv2.COLOR_BGR2RGB)
_ = upload_np_2_oss(r, name=re_id+f"_res_{idx}.jpg", gallery=True)
flag=False
gr.Info("Images have beend uploaded and are under check")
else:
gr.Info("Nothing to to")
return flag
recommend.click(
upload_to_img_gallery,
[original_image, result_gallery, request_id, gallery_flag],
[gallery_flag]
)
ips=[input_image, original_image, original_mask, input_mask, selected_points, source_background, prompt, face_prompt]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery, request_id, gallery_flag])
block.launch(share=True)
|