Spaces:
Running
on
L4
Running
on
L4
File size: 5,120 Bytes
4112985 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import random
import numpy as np
import cv2
import os
import io
import oss2
from PIL import Image
import dashscope
from dashscope import MultiModalConversation
from http import HTTPStatus
import re
import requests
from .log import logger
import concurrent.futures
dashscope.api_key = os.getenv("API_KEY_QW")
# oss
access_key_id = os.getenv("ACCESS_KEY_ID")
access_key_secret = os.getenv("ACCESS_KEY_SECRET")
bucket_name = os.getenv("BUCKET_NAME")
endpoint = os.getenv("ENDPOINT")
bucket = oss2.Bucket(oss2.Auth(access_key_id, access_key_secret), endpoint, bucket_name)
oss_path = "ashui"
oss_path_img_gallery = "ashui_img_gallery"
def download_img_pil(index, img_url):
# print(img_url)
r = requests.get(img_url, stream=True)
if r.status_code == 200:
img = Image.open(io.BytesIO(r.content))
return (index, img)
else:
logger.error(f"Fail to download: {img_url}")
def download_images(img_urls, batch_size):
imgs_pil = [None] * batch_size
# worker_results = []
with concurrent.futures.ThreadPoolExecutor(max_workers=4) as executor:
to_do = []
for i, url in enumerate(img_urls):
future = executor.submit(download_img_pil, i, url)
to_do.append(future)
for future in concurrent.futures.as_completed(to_do):
ret = future.result()
# worker_results.append(ret)
index, img_pil = ret
imgs_pil[index] = img_pil # 按顺序排列url,后续下载关联的图片或者svg需要使用
return imgs_pil
def upload_np_2_oss(input_image, name="cache.png", gallery=False):
imgByteArr = io.BytesIO()
Image.fromarray(input_image).save(imgByteArr, format="PNG")
imgByteArr = imgByteArr.getvalue()
if gallery:
path = oss_path_img_gallery
else:
path = oss_path
bucket.put_object(path+"/"+name, imgByteArr) # data为数据,可以是图片
ret = bucket.sign_url('GET', path+"/"+name, 60*60*24) # 返回值为链接,参数依次为,方法/oss上文件路径/过期时间(s)
del imgByteArr
return ret
def call_with_messages(prompt):
messages = [
{'role': 'user', 'content': prompt}]
response = dashscope.Generation.call(
'qwen-14b-chat',
messages=messages,
result_format='message', # set the result is message format.
)
if response.status_code == HTTPStatus.OK:
return response['output']["choices"][0]["message"]['content']
else:
print('Request id: %s, Status code: %s, error code: %s, error message: %s' % (
response.request_id, response.status_code,
response.code, response.message
))
return None
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def resize_image(input_image, resolution):
H, W, C = input_image.shape
H = float(H)
W = float(W)
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
return img
def nms(x, t, s):
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
z = np.zeros_like(y, dtype=np.uint8)
z[y > t] = 255
return z
def make_noise_disk(H, W, C, F):
noise = np.random.uniform(low=0, high=1, size=((H // F) + 2, (W // F) + 2, C))
noise = cv2.resize(noise, (W + 2 * F, H + 2 * F), interpolation=cv2.INTER_CUBIC)
noise = noise[F: F + H, F: F + W]
noise -= np.min(noise)
noise /= np.max(noise)
if C == 1:
noise = noise[:, :, None]
return noise
def min_max_norm(x):
x -= np.min(x)
x /= np.maximum(np.max(x), 1e-5)
return x
def safe_step(x, step=2):
y = x.astype(np.float32) * float(step + 1)
y = y.astype(np.int32).astype(np.float32) / float(step)
return y
def img2mask(img, H, W, low=10, high=90):
assert img.ndim == 3 or img.ndim == 2
assert img.dtype == np.uint8
if img.ndim == 3:
y = img[:, :, random.randrange(0, img.shape[2])]
else:
y = img
y = cv2.resize(y, (W, H), interpolation=cv2.INTER_CUBIC)
if random.uniform(0, 1) < 0.5:
y = 255 - y
return y < np.percentile(y, random.randrange(low, high))
|