Spaces:
Runtime error
Runtime error
File size: 10,283 Bytes
f97c615 4ffefef f97c615 4ffefef f97c615 4ffefef f97c615 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import json
import os
import time
import gradio as gr
import requests
from demo.log import logger
from demo.util import download_svgs, upload_np_2_oss, download_images
API_KEY = os.getenv("API_KEY_GENERATION")
def convert_bool_to_str(value):
if value:
return "True"
else:
return "False"
def call_generation(input_path,
preprocess,
simplify,
optimize,
mode,
subsample_ratio,
speckle_removal,
sorting_method,
sorting_order,
use_gpu):
## generate image name based on time stamp
time_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
img_name = f"upload_{time_str}.png"
svg_name = f"result_{time_str}"
BATCH_SIZE = 1
if simplify:
BATCH_SIZE += 1
if optimize:
BATCH_SIZE += 1
img_url = upload_np_2_oss(input_path, name=img_name)
simplify = convert_bool_to_str(simplify)
optimize = convert_bool_to_str(optimize)
speckle_removal = convert_bool_to_str(speckle_removal)
use_gpu = convert_bool_to_str(use_gpu)
headers = {
"Content-Type": "application/json",
"Accept": "application/json",
"Authorization": f"Bearer {API_KEY}",
"X-DashScope-Async": "enable",
}
data = {
"model": "pre-vectorize_anything-2333",
"input": {
"base_image_url": img_url
},
"parameters":{
"preprocess": preprocess,
"mode": mode,
"simplify": simplify,
"optimize": optimize,
"sorting_method": sorting_method,
"sorting_order": sorting_order,
"subsample_ratio": subsample_ratio,
"speckle_removal": speckle_removal,
"use_GPU": use_gpu
}
}
url_create_task = 'https://poc-dashscope.aliyuncs.com/api/v1/services/vision/image-process/process'
all_res_ = []
REPEAT = 1
for _ in range(REPEAT):
try:
res_ = requests.post(url_create_task, data=json.dumps(data), headers=headers, timeout=60)
print(json.dumps(data))
all_res_.append(res_)
except requests.Timeout:
# back off and retry
raise gr.Error("网络波动,请求失败,请再次尝试")
all_image_data = []
for res_ in all_res_:
respose_code = res_.status_code
if 200 == respose_code:
res = json.loads(res_.content.decode())
request_id = res['request_id']
task_id = res['output']['task_id']
logger.info(f"task_id: {task_id}: Create Vectorization I2V request success. Params: {data}")
# 异步查询
is_running = True
while is_running:
# url_query = f'https://dashscope.aliyuncs.com/api/v1/tasks/{task_id}'
url_query = f'https://poc-dashscope.aliyuncs.com/api/v1/tasks/{task_id}'
try:
res_ = requests.post(url_query, headers=headers, timeout=60)
except requests.Timeout:
# back off and retry
raise gr.Error("网络波动,请求失败,请再次尝试")
respose_code = res_.status_code
if 200 == respose_code:
res = json.loads(res_.content.decode())
if "SUCCEEDED" == res['output']['task_status']:
logger.info(f"task_id: {task_id}: Generation task query success.")
results = res['output']
img_urls = results['output_img']
logger.info(f"task_id: {task_id}: {res}")
break
elif "FAILED" != res['output']['task_status']:
logger.debug(f"task_id: {task_id}: query result...")
time.sleep(1)
else:
raise gr.Error('Fail to get results from Generation task.')
else:
logger.error(f'task_id: {task_id}: Fail to query task result: {res_.content}')
raise gr.Error("Fail to query task result.")
logger.info(f"task_id: {task_id}: download generated images.")
img_data = download_svgs(img_urls, BATCH_SIZE, svg_name)
logger.info(f"task_id: {task_id}: Generate done.")
all_image_data += img_data
else:
logger.error(f'Fail to create Generation task: {res_.content}')
raise gr.Error("Fail to create Generation task.")
if len(all_image_data) != REPEAT * BATCH_SIZE:
raise gr.Error("Fail to Generation.")
return all_image_data[-1:]
def call_generation_t2v(prompt,
num_imgs,
image_resolution_h,
image_resolution_w,
details,
style,
vectorize,
preprocess,
simplify,
optimize,
mode,
subsample_ratio,
speckle_removal,
sorting_method,
sorting_order,
use_gpu):
## generate image name based on time stamp
time_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
# img_name = f"upload_{time_str}.png"
svg_name = f"result_{time_str}"
generate_img_name = f"generate_{time_str}"
BATCH_SIZE = 1
count = 1
start_ind = 0
if simplify:
BATCH_SIZE += 1
count +=1
start_ind += 1
if optimize:
BATCH_SIZE += 1
start_ind += 1
count +=1
BATCH_SIZE *= num_imgs
# img_url = upload_np_2_oss(input_path, name=img_name)
# simplify = convert_bool_to_str(simplify)
# optimize = convert_bool_to_str(optimize)
# speckle_removal = convert_bool_to_str(speckle_removal)
# use_gpu = convert_bool_to_str(use_gpu)
headers = {
"Content-Type": "application/json",
"Accept": "application/json",
"Authorization": f"Bearer {API_KEY}",
"X-DashScope-Async": "enable",
}
data = {
"model": "pre-vectorize_anything_t2v-2352",
"input": {
"prompt": prompt
},
"parameters":{
"num_imgs" : num_imgs,
"image_resolution_h": image_resolution_h,
"image_resolution_w": image_resolution_w,
"details" : details,
"style" : style,
"vectorize" : vectorize,
"preprocess": preprocess,
"mode": mode,
"simplify": simplify,
"optimize": optimize,
"sorting_method": sorting_method,
"sorting_order": sorting_order,
"subsample_ratio": subsample_ratio,
"speckle_removal": speckle_removal,
"use_GPU": use_gpu
}
}
url_create_task = 'https://poc-dashscope.aliyuncs.com/api/v1/services/aigc/text2image/image-synthesis'
all_res_ = []
REPEAT = 1
for _ in range(REPEAT):
try:
res_ = requests.post(url_create_task, data=json.dumps(data), headers=headers, timeout=120)
print(json.dumps(data))
all_res_.append(res_)
except requests.Timeout:
# back off and retry
raise gr.Error("网络波动,请求失败,请再次尝试")
all_image_data = []
for res_ in all_res_:
respose_code = res_.status_code
if 200 == respose_code:
res = json.loads(res_.content.decode())
request_id = res['request_id']
task_id = res['output']['task_id']
logger.info(f"task_id: {task_id}: Create Vectorize T2V request success. Params: {data}")
# 异步查询
is_running = True
while is_running:
# url_query = f'https://dashscope.aliyuncs.com/api/v1/tasks/{task_id}'
url_query = f'https://poc-dashscope.aliyuncs.com/api/v1/tasks/{task_id}'
try:
res_ = requests.post(url_query, headers=headers, timeout=120)
except requests.Timeout:
# back off and retry
raise gr.Error("网络波动,请求失败,请再次尝试")
respose_code = res_.status_code
if 200 == respose_code:
res = json.loads(res_.content.decode())
if "SUCCEEDED" == res['output']['task_status']:
logger.info(f"task_id: {task_id}: Generation task query success.")
results = res['output']
img_urls = results['output_img']
logger.info(f"task_id: {task_id}: {res}")
break
elif "FAILED" != res['output']['task_status']:
logger.debug(f"task_id: {task_id}: query result...")
time.sleep(1)
else:
raise gr.Error('Fail to get results from Generation task.')
else:
logger.error(f'task_id: {task_id}: Fail to query task result: {res_.content}')
raise gr.Error("Fail to query task result.")
logger.info(f"task_id: {task_id}: download generated images.")
if vectorize:
img_data = download_svgs(img_urls, BATCH_SIZE, svg_name)
else:
img_data = download_images(img_urls, num_imgs, generate_img_name)
logger.info(f"task_id: {task_id}: Generate done.")
all_image_data += img_data
else:
logger.error(f'Fail to create Generation task: {res_.content}')
raise gr.Error("Fail to create Generation task.")
if vectorize:
if len(all_image_data) != REPEAT * BATCH_SIZE:
raise gr.Error("Fail to Generation.")
else:
if len(all_image_data) != REPEAT * num_imgs:
raise gr.Error("Fail to Generation.")
return all_image_data[start_ind::BATCH_SIZE//num_imgs]
if __name__ == "__main__":
call_generation()
|