File size: 10,283 Bytes
f97c615
 
 
 
 
 
 
 
4ffefef
f97c615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ffefef
f97c615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ffefef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f97c615
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import json
import os
import time

import gradio as gr
import requests

from demo.log import logger
from demo.util import download_svgs, upload_np_2_oss, download_images

API_KEY = os.getenv("API_KEY_GENERATION")

def convert_bool_to_str(value):
    if value:
        return "True"
    else:
        return "False"

def call_generation(input_path, 
                    preprocess, 
                    simplify, 
                    optimize, 
                    mode, 
                    subsample_ratio, 
                    speckle_removal, 
                    sorting_method,
                    sorting_order,
                    use_gpu):
    
    ## generate image name based on time stamp
    time_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
    img_name = f"upload_{time_str}.png"
    svg_name = f"result_{time_str}"
    BATCH_SIZE = 1
    if simplify:
        BATCH_SIZE += 1
    if optimize:
        BATCH_SIZE += 1
    img_url = upload_np_2_oss(input_path, name=img_name)
    simplify = convert_bool_to_str(simplify)
    optimize = convert_bool_to_str(optimize)
    speckle_removal = convert_bool_to_str(speckle_removal)
    use_gpu = convert_bool_to_str(use_gpu)
    headers = {
        "Content-Type": "application/json",
        "Accept": "application/json",
        "Authorization": f"Bearer {API_KEY}",
        "X-DashScope-Async": "enable",
    }
    data = {
        "model": "pre-vectorize_anything-2333",
        "input": {
            "base_image_url": img_url
        },
        "parameters":{
            "preprocess": preprocess,
            "mode": mode,
            "simplify": simplify, 
            "optimize": optimize,
            "sorting_method": sorting_method,
            "sorting_order": sorting_order,
            "subsample_ratio": subsample_ratio,
            "speckle_removal": speckle_removal, 
            "use_GPU": use_gpu
        }
    }
    url_create_task = 'https://poc-dashscope.aliyuncs.com/api/v1/services/vision/image-process/process'

    all_res_ = []
    REPEAT = 1
    for _ in range(REPEAT):
        try:
            res_ = requests.post(url_create_task, data=json.dumps(data), headers=headers, timeout=60)
            print(json.dumps(data))
            all_res_.append(res_)
        except requests.Timeout:
            # back off and retry
            raise gr.Error("网络波动,请求失败,请再次尝试")

    all_image_data = []
    for res_ in all_res_:
        respose_code = res_.status_code
        if 200 == respose_code:
            res = json.loads(res_.content.decode())
            request_id = res['request_id']
            task_id = res['output']['task_id']
            logger.info(f"task_id: {task_id}: Create Vectorization I2V request success. Params: {data}")

            # 异步查询
            is_running = True
            while is_running:
                # url_query = f'https://dashscope.aliyuncs.com/api/v1/tasks/{task_id}'
                url_query = f'https://poc-dashscope.aliyuncs.com/api/v1/tasks/{task_id}'
                try:
                    res_ = requests.post(url_query, headers=headers, timeout=60)
                except requests.Timeout:
                    # back off and retry
                    raise gr.Error("网络波动,请求失败,请再次尝试")
                respose_code = res_.status_code
                if 200 == respose_code:
                    res = json.loads(res_.content.decode())
                    if "SUCCEEDED" == res['output']['task_status']:
                        logger.info(f"task_id: {task_id}: Generation task query success.")
                        results = res['output']
                        img_urls = results['output_img']
                        logger.info(f"task_id: {task_id}: {res}")
                        break
                    elif "FAILED" != res['output']['task_status']:
                        logger.debug(f"task_id: {task_id}: query result...")
                        time.sleep(1)
                    else:
                        raise gr.Error('Fail to get results from Generation task.')

                else:
                    logger.error(f'task_id: {task_id}: Fail to query task result: {res_.content}')
                    raise gr.Error("Fail to query task result.")

            logger.info(f"task_id: {task_id}: download generated images.")
            img_data = download_svgs(img_urls, BATCH_SIZE, svg_name)
            logger.info(f"task_id: {task_id}: Generate done.")
            all_image_data += img_data
        else:
            logger.error(f'Fail to create Generation task: {res_.content}')
            raise gr.Error("Fail to create Generation task.")

    if len(all_image_data) != REPEAT * BATCH_SIZE:
        raise gr.Error("Fail to Generation.")
    return all_image_data[-1:]

def call_generation_t2v(prompt,
                    num_imgs,
                    image_resolution_h,
                    image_resolution_w,
                    details,
                    style,
                    vectorize,
                    preprocess, 
                    simplify, 
                    optimize, 
                    mode, 
                    subsample_ratio, 
                    speckle_removal, 
                    sorting_method,
                    sorting_order,
                    use_gpu):
    
    ## generate image name based on time stamp
    time_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
    # img_name = f"upload_{time_str}.png"
    svg_name = f"result_{time_str}"
    generate_img_name = f"generate_{time_str}"
    BATCH_SIZE = 1
    count = 1
    start_ind = 0
    if simplify:
        BATCH_SIZE += 1
        count +=1
        start_ind += 1
    if optimize:
        BATCH_SIZE += 1
        start_ind += 1
        count +=1

    BATCH_SIZE *= num_imgs
    # img_url = upload_np_2_oss(input_path, name=img_name)
    # simplify = convert_bool_to_str(simplify)
    # optimize = convert_bool_to_str(optimize)
    # speckle_removal = convert_bool_to_str(speckle_removal)
    # use_gpu = convert_bool_to_str(use_gpu)

    headers = {
        "Content-Type": "application/json",
        "Accept": "application/json",
        "Authorization": f"Bearer {API_KEY}",
        "X-DashScope-Async": "enable",
    }
    data = {
        "model": "pre-vectorize_anything_t2v-2352",
        "input": {
            "prompt": prompt
        },
        "parameters":{
            "num_imgs" : num_imgs,
            "image_resolution_h": image_resolution_h,
            "image_resolution_w": image_resolution_w,
            "details" : details,
            "style" : style,
            "vectorize" : vectorize,
            "preprocess": preprocess,
            "mode": mode,
            "simplify": simplify, 
            "optimize": optimize,
            "sorting_method": sorting_method,
            "sorting_order": sorting_order,
            "subsample_ratio": subsample_ratio,
            "speckle_removal": speckle_removal, 
            "use_GPU": use_gpu
        }
    }
    url_create_task = 'https://poc-dashscope.aliyuncs.com/api/v1/services/aigc/text2image/image-synthesis'

    all_res_ = []
    REPEAT = 1
    for _ in range(REPEAT):
        try:
            res_ = requests.post(url_create_task, data=json.dumps(data), headers=headers, timeout=120)
            print(json.dumps(data))
            all_res_.append(res_)
        except requests.Timeout:
            # back off and retry
            raise gr.Error("网络波动,请求失败,请再次尝试")

    all_image_data = []
    for res_ in all_res_:
        respose_code = res_.status_code
        if 200 == respose_code:
            res = json.loads(res_.content.decode())
            request_id = res['request_id']
            task_id = res['output']['task_id']
            logger.info(f"task_id: {task_id}: Create Vectorize T2V request success. Params: {data}")

            # 异步查询
            is_running = True
            while is_running:
                # url_query = f'https://dashscope.aliyuncs.com/api/v1/tasks/{task_id}'
                url_query = f'https://poc-dashscope.aliyuncs.com/api/v1/tasks/{task_id}'
                try:
                    res_ = requests.post(url_query, headers=headers, timeout=120)
                except requests.Timeout:
                    # back off and retry
                    raise gr.Error("网络波动,请求失败,请再次尝试")
                respose_code = res_.status_code
                if 200 == respose_code:
                    res = json.loads(res_.content.decode())
                    if "SUCCEEDED" == res['output']['task_status']:
                        logger.info(f"task_id: {task_id}: Generation task query success.")
                        results = res['output']
                        img_urls = results['output_img']
                        logger.info(f"task_id: {task_id}: {res}")
                        break
                    elif "FAILED" != res['output']['task_status']:
                        logger.debug(f"task_id: {task_id}: query result...")
                        time.sleep(1)
                    else:
                        raise gr.Error('Fail to get results from Generation task.')

                else:
                    logger.error(f'task_id: {task_id}: Fail to query task result: {res_.content}')
                    raise gr.Error("Fail to query task result.")

            logger.info(f"task_id: {task_id}: download generated images.")
            if vectorize:
                img_data = download_svgs(img_urls, BATCH_SIZE, svg_name)
            else:
                img_data = download_images(img_urls, num_imgs, generate_img_name)

            logger.info(f"task_id: {task_id}: Generate done.")
            all_image_data += img_data
        else:
            logger.error(f'Fail to create Generation task: {res_.content}')
            raise gr.Error("Fail to create Generation task.")
    if vectorize:
        if len(all_image_data) != REPEAT * BATCH_SIZE:
            raise gr.Error("Fail to Generation.")
    else:
        if len(all_image_data) != REPEAT * num_imgs:
            raise gr.Error("Fail to Generation.")
    return all_image_data[start_ind::BATCH_SIZE//num_imgs]


if __name__ == "__main__":
    call_generation()