Spaces:
Runtime error
Runtime error
File size: 5,973 Bytes
f97c615 a48de31 f97c615 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import cv2, os
import gradio as gr
import numpy as np
from demo.generation import call_generation
from demo.instructions import INSTRUCTIONS_VECTORIZE_SIMPLIFY
VERSION = 'v0.1'
GALLERY_LIST = [os.path.join('demo/gallery',path) for path in os.listdir('demo/gallery')]
def resize_image(image, size):
# find the minimal size of the image, resize it to size
# H, W, C = image.shape
return cv2.resize(image, (size[0], size[1]), interpolation=cv2.INTER_LINEAR)
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def process_vector(input_image, upsample_method, svg_simplify, svg_optimize, trace_mode, subsample_ratio, speckle_removal,sorting_method, sorting_order, use_gpu):
print("Processing vector:",upsample_method, svg_simplify, svg_optimize, trace_mode)
if input_image is not None:
## save input_image to a temp file
## process the image
file_list = call_generation(input_image,
preprocess=upsample_method,
simplify=svg_simplify,
optimize=svg_optimize,
mode=trace_mode,
subsample_ratio=subsample_ratio,
speckle_removal=speckle_removal,
sorting_method=sorting_method,
sorting_order=sorting_order,
use_gpu=use_gpu)
return file_list
block = gr.Blocks(
title = "VectorizeAnything",
theme=gr.themes.Soft(
radius_size=gr.themes.sizes.radius_none,
text_size=gr.themes.sizes.text_md
),
css="css/style.css",
).queue()
with block:
state = gr.State(value={
'gallery_selected_img_path': None, # 当前选中的图片路径
'gallery_selected_img_path_idx': 0, # 当前选中的图片路径索引
})
with gr.Row():
gr.HTML(f"""
</br>
<div>
<h1 style="font-size:3rem; "><center>Vectorize Anything: {VERSION} </center></h1>
</div>
</br>
""")
# tab_0 = gr.Tab(label="Gallery (画廊)")
# with tab_0:
# with gr.Row():
# gr.Gallery(label='图像生成结果', value=GALLERY_LIST,show_label=False, elem_id="Gallery", columns=5, height=1000)
tab_3 = gr.Tab(label="IMG to SVG")
with tab_3:
with gr.Accordion('🕹Usage', open=True,):
with gr.Tabs():
gr.HTML(INSTRUCTIONS_VECTORIZE_SIMPLIFY)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="numpy", image_mode="RGBA")
run_vectorize = gr.Button(value="Vectorize",elem_id="btnVEC")
with gr.Accordion("Vector options", open=True):
upsample_method = gr.Dropdown(choices=["None", "x4", "x2"], type="value", value="None", label="Upsample Method")
sorting_method = gr.Dropdown(choices=["brightness","area"], type="value", value="brightness", label="Sorting Method")
sorting_order = gr.Dropdown(choices=["ascend","descend"], type="value", value="descend", label="Sorting Order")
trace_mode = gr.Radio(choices=["overlap", "cutout"], type="value", value="overlap", label="Trace Mode")
use_gpu = gr.Checkbox(label='use GPU', value=False, visible=True)
svg_simplify = gr.Checkbox(label='Simplify SVG', value=False, visible=True)
svg_optimize = gr.Checkbox(label='Optimize SVG', value=False, visible=True)
speckle_removal = gr.Checkbox(label='Remove small speckle', value=False)
subsample_ratio = gr.Slider(label="Subsample Ratio", minimum=1, maximum=10000, value=12, step=1, visible=False)
def exp_gen_click():
return [gr.Slider(value=512), gr.Slider(value=512)] # all examples are 512x512, refresh draw_img
with gr.Column():
result_vector_gallery = gr.Gallery(label='Output', show_label=False, elem_id="Gallery_vector")
with gr.Tab("Image Examples"):
exp_gen_en = gr.Examples(
[
["test_imgs/demo1.png"],
["test_imgs/demo2.jpg"],
["test_imgs/demo3.png"],
["test_imgs/demo4.png"],
["test_imgs/demo5.png"],
["test_imgs/demo6.png"],
["test_imgs/demo7.png"],
["test_imgs/demo8.png"],
["test_imgs/demo9.png"],
["test_imgs/demo10.png"],
["test_imgs/demo11.png"],
["test_imgs/demo12.png"],
],
[input_image],
examples_per_page=20,
label=''
)
exp_gen_en.dataset.click(exp_gen_click, None)
vector_ips = [input_image, upsample_method, svg_simplify, svg_optimize, trace_mode, subsample_ratio, speckle_removal,sorting_method, sorting_order, use_gpu]
run_vectorize.click(fn=process_vector, inputs=vector_ips, outputs=result_vector_gallery)
block.launch(server_name='0.0.0.0', share=False,debug=True, root_path=f"/{os.getenv('GRADIO_PROXY_PATH')}" if os.getenv('GRADIO_PROXY_PATH') else "")
|