File size: 5,973 Bytes
f97c615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a48de31
f97c615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import cv2, os
import gradio as gr
import numpy as np
from demo.generation import call_generation
from demo.instructions import INSTRUCTIONS_VECTORIZE_SIMPLIFY

VERSION = 'v0.1'

GALLERY_LIST = [os.path.join('demo/gallery',path) for path in os.listdir('demo/gallery')]


def resize_image(image, size):
    # find the minimal size of the image, resize it to size
    # H, W, C = image.shape
    return cv2.resize(image, (size[0], size[1]), interpolation=cv2.INTER_LINEAR)

def HWC3(x):
    assert x.dtype == np.uint8
    if x.ndim == 2:
        x = x[:, :, None]
    assert x.ndim == 3
    H, W, C = x.shape
    assert C == 1 or C == 3 or C == 4
    if C == 3:
        return x
    if C == 1:
        return np.concatenate([x, x, x], axis=2)
    if C == 4:
        color = x[:, :, 0:3].astype(np.float32)
        alpha = x[:, :, 3:4].astype(np.float32) / 255.0
        y = color * alpha + 255.0 * (1.0 - alpha)
        y = y.clip(0, 255).astype(np.uint8)
        return y

    


def process_vector(input_image, upsample_method, svg_simplify, svg_optimize, trace_mode, subsample_ratio, speckle_removal,sorting_method, sorting_order, use_gpu):
    print("Processing vector:",upsample_method, svg_simplify, svg_optimize, trace_mode)
    if input_image is not None:
        ## save input_image to a temp file
        
        ## process the image
        file_list = call_generation(input_image, 
                        preprocess=upsample_method, 
                        simplify=svg_simplify, 
                        optimize=svg_optimize, 
                        mode=trace_mode, 
                        subsample_ratio=subsample_ratio, 
                        speckle_removal=speckle_removal, 
                        sorting_method=sorting_method,
                        sorting_order=sorting_order,
                        use_gpu=use_gpu)
        
        return file_list





block = gr.Blocks(
        title = "VectorizeAnything",
        theme=gr.themes.Soft(
            radius_size=gr.themes.sizes.radius_none,
            text_size=gr.themes.sizes.text_md
        ),
        css="css/style.css",
        ).queue()

with block:
    state = gr.State(value={
        'gallery_selected_img_path': None,  # 当前选中的图片路径
        'gallery_selected_img_path_idx': 0,  # 当前选中的图片路径索引
    })
    with gr.Row():
        gr.HTML(f"""
                    </br>
                    <div>
                        <h1 style="font-size:3rem; "><center>Vectorize Anything: {VERSION} </center></h1>
                    </div>
                    </br>
            """)
    # tab_0 = gr.Tab(label="Gallery (画廊)")
    # with tab_0:
    #     with gr.Row():
    #         gr.Gallery(label='图像生成结果', value=GALLERY_LIST,show_label=False, elem_id="Gallery", columns=5, height=1000)


    tab_3 = gr.Tab(label="IMG to SVG")
    with tab_3:   
        with gr.Accordion('🕹Usage', open=True,):
            with gr.Tabs():
                gr.HTML(INSTRUCTIONS_VECTORIZE_SIMPLIFY)
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(type="numpy", image_mode="RGBA")
                run_vectorize = gr.Button(value="Vectorize",elem_id="btnVEC")

                with gr.Accordion("Vector options", open=True):
                    upsample_method = gr.Dropdown(choices=["None", "x4", "x2"], type="value", value="None", label="Upsample Method")
                    sorting_method = gr.Dropdown(choices=["brightness","area"], type="value", value="brightness", label="Sorting Method")
                    sorting_order = gr.Dropdown(choices=["ascend","descend"], type="value", value="descend", label="Sorting Order")
                    trace_mode = gr.Radio(choices=["overlap", "cutout"], type="value", value="overlap", label="Trace Mode")
                    use_gpu = gr.Checkbox(label='use GPU', value=False, visible=True)
                    svg_simplify = gr.Checkbox(label='Simplify SVG', value=False, visible=True)
                    svg_optimize = gr.Checkbox(label='Optimize SVG', value=False, visible=True)
                    speckle_removal = gr.Checkbox(label='Remove small speckle', value=False)
                    subsample_ratio = gr.Slider(label="Subsample Ratio", minimum=1, maximum=10000, value=12, step=1, visible=False)


            def exp_gen_click():
                return [gr.Slider(value=512), gr.Slider(value=512)]  # all examples are 512x512, refresh draw_img

            with gr.Column():
                result_vector_gallery = gr.Gallery(label='Output', show_label=False, elem_id="Gallery_vector")
            

            
                with gr.Tab("Image Examples"):
                    exp_gen_en = gr.Examples(
                    [
                        ["test_imgs/demo1.png"],
                        ["test_imgs/demo2.jpg"],
                        ["test_imgs/demo3.png"],
                        ["test_imgs/demo4.png"],
                        ["test_imgs/demo5.png"],
                        ["test_imgs/demo6.png"],
                        ["test_imgs/demo7.png"],
                        ["test_imgs/demo8.png"],
                        ["test_imgs/demo9.png"],
                        ["test_imgs/demo10.png"],
                        ["test_imgs/demo11.png"],
                        ["test_imgs/demo12.png"],
                    ],
                    [input_image],
                    examples_per_page=20,
                    label=''
                    )
                    exp_gen_en.dataset.click(exp_gen_click, None)

    
    vector_ips = [input_image, upsample_method, svg_simplify, svg_optimize, trace_mode, subsample_ratio, speckle_removal,sorting_method, sorting_order, use_gpu]
    run_vectorize.click(fn=process_vector, inputs=vector_ips, outputs=result_vector_gallery)

block.launch(server_name='0.0.0.0', share=False,debug=True, root_path=f"/{os.getenv('GRADIO_PROXY_PATH')}" if os.getenv('GRADIO_PROXY_PATH') else "")