Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
history: list[tuple[str, str]],
|
@@ -27,21 +134,18 @@ def respond(
|
|
27 |
|
28 |
response = ""
|
29 |
|
30 |
-
for
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
33 |
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
-
token =
|
38 |
-
|
39 |
response += token
|
40 |
yield response
|
41 |
|
42 |
-
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
demo = gr.ChatInterface(
|
46 |
respond,
|
47 |
additional_inputs=[
|
@@ -58,6 +162,5 @@ demo = gr.ChatInterface(
|
|
58 |
],
|
59 |
)
|
60 |
|
61 |
-
|
62 |
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
+
from langchain_community.llms import Ollama
|
2 |
+
from langchain_community.vectorstores import Chroma
|
3 |
+
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
4 |
+
from langchain.text_splitter import CharacterTextSplitter
|
5 |
+
from langchain.prompts import PromptTemplate
|
6 |
+
from langchain.chains.question_answering import load_qa_chain
|
7 |
+
from datasets import load_dataset
|
8 |
+
import pandas as pd
|
9 |
+
from functools import lru_cache
|
10 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
11 |
import gradio as gr
|
12 |
from huggingface_hub import InferenceClient
|
13 |
|
14 |
+
# Initialize the Hugging Face Inference Client
|
|
|
|
|
15 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
16 |
|
17 |
+
# Load dataset
|
18 |
+
dataset = load_dataset('arbml/LK_Hadith')
|
19 |
+
df = pd.DataFrame(dataset['train'])
|
20 |
|
21 |
+
# Filter data
|
22 |
+
filtered_df = df[df['Arabic_Grade'] != 'ΨΆΨΉΩΩ']
|
23 |
+
documents = list(filtered_df['Arabic_Matn'])
|
24 |
+
metadatas = [{"Hadith_Grade": grade} for grade in filtered_df['Arabic_Grade']]
|
25 |
+
|
26 |
+
# Use CharacterTextSplitter
|
27 |
+
text_splitter = CharacterTextSplitter(chunk_size=10000)
|
28 |
+
nltk_chunks = text_splitter.create_documents(documents, metadatas=metadatas)
|
29 |
+
|
30 |
+
# LLM
|
31 |
+
llm = Ollama(model="llama3")
|
32 |
+
|
33 |
+
# Create an embedding model
|
34 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
35 |
+
|
36 |
+
docs_text = [doc.page_content for doc in nltk_chunks]
|
37 |
+
docs_embedding = embeddings.embed_documents(docs_text)
|
38 |
+
|
39 |
+
# Create Chroma vector store
|
40 |
+
vector_store = Chroma.from_documents(nltk_chunks, embedding=embeddings)
|
41 |
+
|
42 |
+
# Question answering prompt template
|
43 |
+
qna_template = "\n".join([
|
44 |
+
"Answer the next question using the provided context.",
|
45 |
+
"If the answer is not contained in the context, say 'NO ANSWER IS AVAILABLE'",
|
46 |
+
"### Context:",
|
47 |
+
"{context}",
|
48 |
+
"",
|
49 |
+
"### Question:",
|
50 |
+
"{question}",
|
51 |
+
"",
|
52 |
+
"### Answer:",
|
53 |
+
])
|
54 |
+
|
55 |
+
qna_prompt = PromptTemplate(
|
56 |
+
template=qna_template,
|
57 |
+
input_variables=['context', 'question'],
|
58 |
+
verbose=True
|
59 |
+
)
|
60 |
+
|
61 |
+
# Combine intermediate context template
|
62 |
+
combine_template = "\n".join([
|
63 |
+
"Given intermediate contexts for a question, generate a final answer.",
|
64 |
+
"If the answer is not contained in the intermediate contexts, say 'NO ANSWER IS AVAILABLE'",
|
65 |
+
"### Summaries:",
|
66 |
+
"{summaries}",
|
67 |
+
"",
|
68 |
+
"### Question:",
|
69 |
+
"{question}",
|
70 |
+
"",
|
71 |
+
"### Final Answer:",
|
72 |
+
])
|
73 |
+
|
74 |
+
combine_prompt = PromptTemplate(
|
75 |
+
template=combine_template,
|
76 |
+
input_variables=['summaries', 'question'],
|
77 |
+
)
|
78 |
+
|
79 |
+
# Load map-reduce chain for question answering
|
80 |
+
map_reduce_chain = load_qa_chain(llm, chain_type="map_reduce",
|
81 |
+
return_intermediate_steps=True,
|
82 |
+
question_prompt=qna_prompt,
|
83 |
+
combine_prompt=combine_prompt)
|
84 |
+
|
85 |
+
# Function to preprocess the query (handling long inputs)
|
86 |
+
def preprocess_query(query):
|
87 |
+
if len(query) > 512: # Arbitrary length, adjust based on LLM input limits
|
88 |
+
query = query[:512] + "..."
|
89 |
+
return query
|
90 |
+
|
91 |
+
# Caching mechanism for frequently asked questions
|
92 |
+
@lru_cache(maxsize=100) # Cache up to 100 recent queries
|
93 |
+
def answer_query(query):
|
94 |
+
query = preprocess_query(query)
|
95 |
+
|
96 |
+
try:
|
97 |
+
# Search for similar documents in vector store
|
98 |
+
similar_docs = vector_store.similarity_search(query, k=5)
|
99 |
+
|
100 |
+
if not similar_docs:
|
101 |
+
return "No relevant documents found."
|
102 |
+
|
103 |
+
# Run map-reduce chain to get the answer
|
104 |
+
final_answer = map_reduce_chain({
|
105 |
+
"input_documents": similar_docs,
|
106 |
+
"question": query
|
107 |
+
}, return_only_outputs=True)
|
108 |
+
|
109 |
+
output_text = final_answer.get('output_text', "No answer generated by the model.")
|
110 |
+
|
111 |
+
except Exception as e:
|
112 |
+
output_text = f"An error occurred: {str(e)}"
|
113 |
+
|
114 |
+
return output_text
|
115 |
+
|
116 |
+
# Gradio Chatbot response function using Hugging Face Inference Client
|
117 |
def respond(
|
118 |
message,
|
119 |
history: list[tuple[str, str]],
|
|
|
134 |
|
135 |
response = ""
|
136 |
|
137 |
+
for msg in client.chat_completion(
|
138 |
messages,
|
139 |
max_tokens=max_tokens,
|
140 |
stream=True,
|
141 |
temperature=temperature,
|
142 |
top_p=top_p,
|
143 |
):
|
144 |
+
token = msg.choices[0].delta.content
|
|
|
145 |
response += token
|
146 |
yield response
|
147 |
|
148 |
+
# Gradio Chat Interface
|
|
|
|
|
149 |
demo = gr.ChatInterface(
|
150 |
respond,
|
151 |
additional_inputs=[
|
|
|
162 |
],
|
163 |
)
|
164 |
|
|
|
165 |
if __name__ == "__main__":
|
166 |
+
demo.launch()
|