QA_GeneraToR / app.py
mohamedemam's picture
Update app.py
4b1c971
raw
history blame
2.6 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import re
# Load the tokenizer and model
model_name = "mohamedemam/QA_GeneraToR"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Recommended words for users to choose from
recommended_words = [
"which", "how", "when", "where", "who", "whom", "whose", "why",
"can", "could", "may", "might", "will", "would", "shall", "should",
"do", "does", "did", "is", "are", "am", "was", "were", "be", "being", "been",
"have", "has", "had", "if", "must",
]
# Example contexts
example_contexts = [
"when: Lionel Andrés Messi...",
"where: Lionel Andrés Messi...",
"how: Lionel Andrés Messi...",
"what: Lionel Andrés Messi...",
"where: Egypt...",
"where: There is evidence..."
# Add more examples here
]
# Function to generate questions and answers with configurable parameters
def generate_qa(context, recommended_word, temperature, top_p,num_seq, num_samples=3):
input_text = f"{recommended_word}: {context}"
input_text=re.sub(f'\n'," ",input_text).lower()
input_ids = tokenizer(input_text, return_tensors='pt')
# Generate with configurable parameters
output = model.generate(
**input_ids,
temperature=temperature,
top_p=top_p,
num_return_sequences=num_seq,
do_sample=True,
max_length=100,
num_beams=6,
length_penalty=1.4,
top_k=0
)
#
generated_text = tokenizer.batch_decode(output, skip_special_tokens=True)
formatted_output = "\n\n".join([f"Original Context: {context}", "Generated Sentences:"] + generated_text)
return formatted_output
# Create the Gradio interface with sliders for temperature and top-p
iface = gr.Interface(
fn=generate_qa,
inputs=[
gr.inputs.Dropdown(example_contexts, label="Choose an Example"),
gr.inputs.Radio(recommended_words, label="Choose a Recommended Word"),
gr.inputs.Slider(minimum=0.0, maximum=2, default=2.1, step=0.01, label="Temperature"),
gr.inputs.Slider(minimum=0.0, maximum=1, default=0.5, step=0.01, label="Top-p"),
gr.inputs.Slider(minimum=1, maximum=20, default=3, step=1, label="num of sequance")
],
outputs=gr.outputs.Textbox(label="Generated Output"),
title="Question Generation and Answering",
description="Select an example context, choose a recommended word, adjust temperature and top-p. The model will generate questions and answers.",
)
# Launch the interface
iface.launch()