Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import re | |
# Load the tokenizer and model | |
model_name = "mohamedemam/QA_GeneraToR" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
# Recommended words for users to choose from | |
recommended_words = [ | |
"which", "how", "when", "where", "who", "whom", "whose", "why", | |
"can", "could", "may", "might", "will", "would", "shall", "should", | |
"do", "does", "did", "is", "are", "am", "was", "were", "be", "being", "been", | |
"have", "has", "had", "if", "must", | |
] | |
# Example contexts | |
example_contexts = [ | |
"when: Lionel Andrés Messi...", | |
"where: Lionel Andrés Messi...", | |
"how: Lionel Andrés Messi...", | |
"what: Lionel Andrés Messi...", | |
"where: Egypt...", | |
"where: There is evidence..." | |
# Add more examples here | |
] | |
# Function to generate questions and answers with configurable parameters | |
def generate_qa(context, recommended_word, temperature, top_p,num_seq, num_samples=3): | |
input_text = f"{recommended_word}: {context}" | |
input_text=re.sub(f'\n'," ",input_text).lower() | |
input_ids = tokenizer(input_text, return_tensors='pt') | |
# Generate with configurable parameters | |
output = model.generate( | |
**input_ids, | |
temperature=temperature, | |
top_p=top_p, | |
num_return_sequences=num_seq, | |
do_sample=True, | |
max_length=100, | |
num_beams=6, | |
length_penalty=1.4, | |
top_k=0 | |
) | |
# | |
generated_text = tokenizer.batch_decode(output, skip_special_tokens=True) | |
formatted_output = "\n\n".join([f"Original Context: {context}", "Generated Sentences:"] + generated_text) | |
return formatted_output | |
# Create the Gradio interface with sliders for temperature and top-p | |
iface = gr.Interface( | |
fn=generate_qa, | |
inputs=[ | |
gr.inputs.Dropdown(example_contexts, label="Choose an Example"), | |
gr.inputs.Radio(recommended_words, label="Choose a Recommended Word"), | |
gr.inputs.Slider(minimum=0.0, maximum=2, default=2.1, step=0.01, label="Temperature"), | |
gr.inputs.Slider(minimum=0.0, maximum=1, default=0.5, step=0.01, label="Top-p"), | |
gr.inputs.Slider(minimum=1, maximum=20, default=3, step=1, label="num of sequance") | |
], | |
outputs=gr.outputs.Textbox(label="Generated Output"), | |
title="Question Generation and Answering", | |
description="Select an example context, choose a recommended word, adjust temperature and top-p. The model will generate questions and answers.", | |
) | |
# Launch the interface | |
iface.launch() |