Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
# Load the tokenizer and model | |
model_name = "mohamedemam/QA_GeneraTor" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
# Function to generate questions and answers with configurable parameters | |
def generate_qa(context, temperature, top_p): | |
input_text = f"Quation answer: {context}" | |
input_ids = ttokenizer(input_text,max_length=400,truncation=True,padding="max_length",return_tensors='pt') | |
# Generate with configurable parameters | |
output = model.generate( | |
input_ids, | |
max_length=150, | |
num_return_sequences=1, | |
no_repeat_ngram_size=2, | |
temperature=temperature, | |
top_p=top_p | |
) | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return generated_text | |
# Create the Gradio interface with sliders for temperature and top-p | |
iface = gr.Interface( | |
fn=generate_qa, | |
inputs=["text", gr.inputs.Slider(minimum=0.2, maximum=2, default=1, step=0.1, label="Temperature"), | |
gr.inputs.Slider(minimum=0.1, maximum=1, default=0.8, step=0.1, label="Top-p")], | |
outputs="text", | |
title="Question Generation and Answering", | |
description="Enter a context, adjust temperature and top-p, and the model will generate a question and answer.", | |
) | |
# Launch the interface | |
iface.launch() |