import gradio as gr from transformers import pipeline # Initialize the pipeline pipe = pipeline("Summarization", model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Format the conversation history messages = [{"role": "system", "content": system_message}] for user_msg, assistant_msg in history: if user_msg: messages.append({"role": "user", "content": user_msg}) if assistant_msg: messages.append({"role": "assistant", "content": assistant_msg}) # Add the current message messages.append({"role": "user", "content": message}) # Convert messages to a single string format that the model can understand prompt = "\n".join([f"{msg['role']}: {msg['content']}" for msg in messages]) # Generate response using the pipeline response = "" for output in pipe( prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, ): # Extract the generated text new_text = output[0]['generated_text'][len(response):] response = output[0]['generated_text'] yield new_text # Create the Gradio interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox( value="You are a friendly and helpful assistant.", label="System message" ), gr.Slider( minimum=1, maximum=2048, value=512, step=1, label="Max new tokens" ), gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" ), ], title="DeepSeek Chat Interface", description="Chat with the DeepSeek-R1-Distill-Qwen-1.5B model", ) # Launch the interface if __name__ == "__main__": demo.launch()