OCR_V1 / app.py
mohammad2928git's picture
Update app.py
3ef1009 verified
import gradio as gr
import tensorflow as tf
import keras_ocr
import requests
import cv2
import os
import csv
import numpy as np
import pandas as pd
import huggingface_hub
from huggingface_hub import Repository
from datetime import datetime
import scipy.ndimage.interpolation as inter
import easyocr
import datasets
from datasets import load_dataset, Image
from PIL import Image
from paddleocr import PaddleOCR
import pytesseract
from pdf2image import convert_from_path
from PIL import Image
import os
import tempfile
# Function to perform OCR
def ocr(input_file, lang='fas'): # 'fas': Persian language (Farsi)
extracted_text = ""
# if isinstance(input_file, Image.Image): # If the input is an image
text = pytesseract.image_to_string(input_file, lang=lang)
extracted_text = text
return extracted_text
"""
Paddle OCR
"""
def ocr_with_paddle(img):
finaltext = ''
ocr = PaddleOCR(lang='fa', use_angle_cls=True)
# img_path = 'exp.jpeg'
result = ocr.ocr(img)
for i in range(len(result[0])):
text = result[0][i][1][0]
finaltext += ' '+ text
return finaltext
"""
Keras OCR
"""
def ocr_with_keras(img):
output_text = ''
pipeline=keras_ocr.pipeline.Pipeline()
images=[keras_ocr.tools.read(img)]
predictions=pipeline.recognize(images)
first=predictions[0]
for text,box in first:
output_text += ' '+ text
return output_text
"""
easy OCR
"""
# gray scale image
def get_grayscale(image):
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Thresholding or Binarization
def thresholding(src):
return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1]
def ocr_with_easy(img):
gray_scale_image=get_grayscale(img)
thresholding(gray_scale_image)
cv2.imwrite('image.png',gray_scale_image)
reader = easyocr.Reader(['fa','en'])
bounds = reader.readtext('image.png',paragraph="False",detail = 0)
bounds = ''.join(bounds)
return bounds
"""
Generate OCR
"""
def process(input_type, gr_img, lang):
if isinstance(gr_img, np.ndarray):
# Create a temporary file to save the image
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file:
temp_path = temp_file.name
# Save the NumPy array as an image file
Image.fromarray(gr_img).save(temp_path)
image = Image.open(temp_path)
# image = file
extracted_text = ocr(image, lang)
return extracted_text
def generate_ocr(Method, img):
text_output = ''
add_csv = []
image_id = 1
print("Method___________________",Method)
if Method == 'Version2':
text_output = ocr_with_easy(img)
if Method == 'KerasOCR':
text_output = ocr_with_keras(img)
if Method == 'Version1':
text_output = ocr_with_paddle(img)
if Method == 'Version3':
text_output = process("img", img, "fas")
return text_output
"""
Create user interface for OCR demo
"""
# image = gr.Image(shape=(300, 300))
# image = gr.File(label="Upload PDF/Image")
image = gr.Image()
method = gr.Radio(["Version1","Version2", "Version3"],value="PaddleOCR")
output = gr.Textbox(label="Output")
demo = gr.Interface(
generate_ocr,
[method, image],
output,
title="Persian Optical Character Recognition",
css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}",
article = """<p style='text-align: center;'>Feel free to give us your thoughts on this demo and please contact us at
<a href="mailto:[email protected]" target="_blank">[email protected]</a>
<p style='text-align: center;'>Developed by: <a href="https://github.com/mohammad2928" target="_blank">Mohammad Mahmoudi</a></p>"""
)
# demo.launch(enable_queue = False)
demo.launch(share=True)