import gradio as gr import tensorflow as tf import keras_ocr import requests import cv2 import os import csv import numpy as np import pandas as pd import huggingface_hub from huggingface_hub import Repository from datetime import datetime import scipy.ndimage.interpolation as inter import easyocr import datasets from datasets import load_dataset, Image from PIL import Image from paddleocr import PaddleOCR import pytesseract from pdf2image import convert_from_path from PIL import Image import os import tempfile # Function to perform OCR def ocr(input_file, lang='fas'): # 'fas': Persian language (Farsi) extracted_text = "" # if isinstance(input_file, Image.Image): # If the input is an image text = pytesseract.image_to_string(input_file, lang=lang) extracted_text = text return extracted_text """ Paddle OCR """ def ocr_with_paddle(img): finaltext = '' ocr = PaddleOCR(lang='fa', use_angle_cls=True) # img_path = 'exp.jpeg' result = ocr.ocr(img) for i in range(len(result[0])): text = result[0][i][1][0] finaltext += ' '+ text return finaltext """ Keras OCR """ def ocr_with_keras(img): output_text = '' pipeline=keras_ocr.pipeline.Pipeline() images=[keras_ocr.tools.read(img)] predictions=pipeline.recognize(images) first=predictions[0] for text,box in first: output_text += ' '+ text return output_text """ easy OCR """ # gray scale image def get_grayscale(image): return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Thresholding or Binarization def thresholding(src): return cv2.threshold(src,127,255, cv2.THRESH_TOZERO)[1] def ocr_with_easy(img): gray_scale_image=get_grayscale(img) thresholding(gray_scale_image) cv2.imwrite('image.png',gray_scale_image) reader = easyocr.Reader(['fa','en']) bounds = reader.readtext('image.png',paragraph="False",detail = 0) bounds = ''.join(bounds) return bounds """ Generate OCR """ def process(input_type, gr_img, lang): if isinstance(gr_img, np.ndarray): # Create a temporary file to save the image with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as temp_file: temp_path = temp_file.name # Save the NumPy array as an image file Image.fromarray(gr_img).save(temp_path) image = Image.open(temp_path) # image = file extracted_text = ocr(image, lang) return extracted_text def generate_ocr(Method, img): text_output = '' add_csv = [] image_id = 1 print("Method___________________",Method) if Method == 'Version2': text_output = ocr_with_easy(img) if Method == 'KerasOCR': text_output = ocr_with_keras(img) if Method == 'Version1': text_output = ocr_with_paddle(img) if Method == 'Version3': text_output = process("img", img, "fas") return text_output """ Create user interface for OCR demo """ # image = gr.Image(shape=(300, 300)) # image = gr.File(label="Upload PDF/Image") image = gr.Image() method = gr.Radio(["Version1","Version2", "Version3"],value="PaddleOCR") output = gr.Textbox(label="Output") demo = gr.Interface( generate_ocr, [method, image], output, title="Persian Optical Character Recognition", css=".gradio-container {background-color: lightgray} #radio_div {background-color: #FFD8B4; font-size: 40px;}", article = """

Feel free to give us your thoughts on this demo and please contact us at zaribar2928@gmail.com

Developed by: Mohammad Mahmoudi

""" ) # demo.launch(enable_queue = False) demo.launch(share=True)