mohammed commited on
Commit
db12eeb
·
verified ·
1 Parent(s): dc44fd4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Load model directly
2
+ from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
3
+ import torchaudio
4
+ import streamlit as st
5
+
6
+ processor = AutoProcessor.from_pretrained("mohammed/whisper-small-arabic-cv-11")
7
+ model = AutoModelForSpeechSeq2Seq.from_pretrained("mohammed/whisper-small-arabic-cv-11")
8
+
9
+ st.title("Arabic Whisper model v2")
10
+
11
+ audio_file = st.file_uploader("Upload audio", type=["mp3", "wav", "m4a"])
12
+
13
+ if st.sidebar.button("Trascribe Audio"):
14
+ if audio_file is not None:
15
+ st.sidebar.success("Transcribing audio") # on success audio file
16
+
17
+ audio_tensor, sample_rate = torchaudio.load(audio_file)
18
+
19
+ if sample_rate != 16000:
20
+ resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
21
+ audio_tensor = resampler(audio_tensor)
22
+
23
+ audio_np = audio_tensor.squeeze().numpy()
24
+
25
+ # processing audio
26
+ inputs = processor(audio_np, sample_rate=16000, return_tensors="pt")
27
+
28
+ # generating transcript
29
+ generated_ids = model.generate(inputs["input_features"])
30
+
31
+ transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
32
+
33
+ # display transcription
34
+ st.sidebar.success("Transcription is complete")
35
+ st.text(transcription[0])
36
+
37
+ else:
38
+ st.sidebar.error("Please upload a valid audio file")