mohammedriza-rahman commited on
Commit
28528dc
·
verified ·
1 Parent(s): 9a88e91

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +80 -0
  2. requirements.txt +5 -0
  3. student_performance_model.h5 +3 -0
app.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ## importing the necessary libraries
3
+ import streamlit as st
4
+ import joblib
5
+ import numpy as np
6
+
7
+ ## to save the model
8
+ #joblib.dump(mode_name,"the path where you want to save the model")
9
+
10
+
11
+ ## to load the model
12
+
13
+ model = joblib.load("student_performance_model.h5")
14
+
15
+
16
+ def predict_marks(Hours_studied,Previous_score , Extracurriculum_activities, sleep_hours , sample_question):
17
+ #predict the students marks based on the input data
18
+
19
+ input_data = np.array([[Hours_studied,Previous_score , Extracurriculum_activities, sleep_hours , sample_question]])
20
+ prediction = model.predict(input_data)
21
+ prediction = round(float(prediction),2)
22
+
23
+
24
+ ## ensure the prediction does not exceed 100
25
+
26
+ if prediction > 100:
27
+ prediction = 100
28
+
29
+ return prediction
30
+
31
+
32
+ def main():
33
+
34
+ st.title("Student Performance Prediction")
35
+
36
+ ## input data
37
+
38
+ name = st.text_input("enter your name")
39
+
40
+ Hours_studied = st.number_input("number of hours you studied",min_value = 0.0 ,max_value=18.0,value = 0.0)
41
+
42
+ Previous_score = st.number_input("enter your previous score",min_value = 0.0 ,max_value=100.0,value = 0.0)
43
+
44
+ Extracurriculum_Activites = st.number_input("no.of extracurricular activities done",min_value = 0.0,max_value = 10.0 ,value= 0.0 )
45
+
46
+ sleep_hours = st.number_input ("Hours you slept", min_value =0.0,max_value = 12.0, value = 0.0)
47
+
48
+ sample_questions = st.number_input ("number of sample paper you solved", min_value =0.0,max_value = 20.0, value = 0.0)
49
+
50
+ ## sidebar interaction
51
+
52
+ st.sidebar.title(f"# hey {name}")
53
+ st.sidebar.title(f"Welcome to your Marks predictor!...")
54
+
55
+
56
+ ## prediction button
57
+
58
+ if st.button("Predict your Marks"):
59
+ prediction = predict_marks(Hours_studied,Previous_score , Extracurriculum_Activites,sleep_hours ,sample_questions)
60
+
61
+
62
+ ## display the prediction
63
+
64
+ if prediction >=90:
65
+ st.balloons()
66
+ st.success(f"congrats {name} you are on a track to score {prediction} marks!.kepp it up ")
67
+ elif prediction>=35:
68
+ st.warning(f"hey {name} you are on a track to score {prediction} marks. but there's a room to aim higher!")
69
+ else:
70
+ st.error(f"{name} , oh no you might fail the exam as you will be getting {prediction}, work hard and conncentrate on your studies")
71
+
72
+
73
+ if __name__ =="__main__":
74
+ main()
75
+
76
+
77
+
78
+
79
+
80
+
requirements.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ pandas==2.0.3
2
+ joblib==1.2.0
3
+ numpy==1.24.3
4
+ streamlit==1.37.0
5
+ scikit-learn
student_performance_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4157ea9e74dc017119fd526cc588e579c595ba7ab8ba62f5b7213eec0316d811
3
+ size 1040