mohan007 commited on
Commit
9080f12
·
verified ·
1 Parent(s): 1066e0f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -2
app.py CHANGED
@@ -1,4 +1,97 @@
 
 
 
1
  import streamlit as st
 
 
 
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.llms import OpenAI
2
+ from langchain.agents import AgentType, initialize_agent, load_tools
3
+ from langchain.callbacks import StreamlitCallbackHandler
4
  import streamlit as st
5
+ from langchain_community.llms import LlamaCpp
6
+ from langchain_community.tools import HumanInputRun
7
+ from langchain_community.llms import Ollama
8
+ from langchain.agents import AgentExecutor, create_react_agent
9
 
10
+ #from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext #Vector store index is for indexing the vector
11
+ #from llama_index.llms.huggingface import HuggingFaceLLM
12
+ from langchain_huggingface import HuggingFaceEmbeddings
13
+ # from langchain_huggingface import HuggingFaceEmbeddings
14
+ # from langchain_community.embeddings import HuggingFaceInstructEmbeddings,HuggingFaceEmbeddings
15
+ #from llama_index.core import ServiceContext,Settings
16
+ # from langchain.embeddings.huggingface import HuggingFaceEmbeddings
17
+ #from llama_index.embeddings.huggingface import HuggingFaceEmbedding
18
+ import streamlit as st
19
+ from langchain.embeddings.openai import OpenAIEmbeddings
20
+ from langchain.vectorstores import FAISS
21
+ from langchain.document_loaders import TextLoader
22
+ from langchain.text_splitter import CharacterTextSplitter
23
+ from langchain.llms import OpenAI
24
+ from langchain.chains import RetrievalQA
25
+
26
+ from langchain.chat_models import ChatOpenAI
27
+ from langchain.llms import OpenAI
28
+ from langchain.agents import load_tools, initialize_agent, Tool
29
+ from langchain.tools import HumanInputRun
30
+ from langchain.agents import AgentType
31
+ from langchain_community.document_loaders import PyPDFDirectoryLoader
32
+ from langchain_ollama.llms import OllamaLLM
33
+ from langchain_core.callbacks import CallbackManager, StreamingStdOutCallbackHandler
34
+ from huggingface_hub import snapshot_download
35
+ from langchain import hub
36
+ import os
37
+ def get_input() -> str:
38
+ if prompt := st.chat_input():
39
+ return prompt
40
+ callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
41
+ download = True
42
+ for file_name in os.listdir("/home/user/app"):
43
+ if "llama-2-7b-chat.Q5_K_S.gguf" in file_name:
44
+ download=False
45
+ if download:
46
+ snapshot_download(repo_id="TheBloke/Llama-2-7B-Chat-GGUF", allow_patterns="*.Q5_K_S.gguf",local_dir="/home/user/app")
47
+
48
+ llm = LlamaCpp(
49
+ model_path="/home/user/app/llama-2-7b-chat.Q5_K_S.gguf",
50
+ n_gpu_layers=-1,
51
+ n_batch=512,
52
+ n_ctx=4096,
53
+ callback_manager=callback_manager,
54
+ verbose=True, # Verbose is required to pass to the callback manager
55
+ )
56
+ # llm = OpenAI(temperature=0, streaming=True)
57
+ embeddings= HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5")
58
+ documents = PyPDFDirectoryLoader("/home/user/app").load()
59
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
60
+ texts = text_splitter.split_documents(documents)
61
+
62
+
63
+ db_pdf = FAISS.from_documents(texts, embeddings)
64
+ db_pdf.save_local("db_pdf")
65
+ print("whats happenings ")
66
+
67
+ # Creating retrieval QA chains
68
+
69
+ db_pdf_retriever = RetrievalQA.from_chain_type(
70
+ llm=llm, chain_type="stuff", retriever=db_pdf.as_retriever()
71
+ )
72
+ db_pdf_tool = Tool(
73
+ name="intellify hr policies tool",
74
+ func=db_pdf_retriever.run,
75
+ description="useful for when you want to answer any questions on the intellify hr policies.",
76
+ return_direct=True
77
+ )
78
+
79
+ human_input = HumanInputRun(input_func=get_input)
80
+
81
+ tools = [
82
+ db_pdf_tool,
83
+ human_input
84
+ ]
85
+ prompt = hub.pull("hwchase17/react")
86
+ agent = create_react_agent(llm, tools, prompt)
87
+ agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True,handle_parsing_errors=True)
88
+
89
+ # tools = load_tools(["human", ], llm=llm, input_func=get_input)
90
+ # agent = initialize_agent(
91
+ # tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True
92
+ # )
93
+
94
+ with st.chat_message("assistant"):
95
+ st_callback = StreamlitCallbackHandler(st.container())
96
+ response = agent_executor.invoke(callbacks=[st_callback])
97
+ st.write(response)