Spaces:
Runtime error
Runtime error
autism exp minicpm
Browse files- README.md +8 -7
- app.py +71 -0
- images/bird.jpg +0 -0
- images/cat.jpg +0 -0
- images/dog.jpg +0 -0
- requirements.txt +17 -0
- src/__init__.py +0 -0
- src/app/__init__.py +0 -0
- src/app/model.py +66 -0
- src/app/response.py +119 -0
- src/config.py +8 -0
- src/exception.py +50 -0
- src/logger.py +21 -0
README.md
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
|
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: PicQ
|
3 |
+
emoji: π’
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.11.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
+
short_description: Demo for MiniCPM-V 2.6 to answer questions about images
|
12 |
---
|
13 |
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Importing the requirements
|
2 |
+
# import warnings
|
3 |
+
# warnings.filterwarnings("ignore")
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from src.app.response import describe_image
|
7 |
+
|
8 |
+
|
9 |
+
# Image, text query, and input parameters
|
10 |
+
# image = gr.Image(type="pil", label="Image")
|
11 |
+
image = gr.Video()
|
12 |
+
question = gr.Textbox(label="prompts ", placeholder="Enter your prompts here")
|
13 |
+
temperature = gr.Slider(
|
14 |
+
minimum=0.01, maximum=1.99, step=0.01, value=0.7, label="Temperature"
|
15 |
+
)
|
16 |
+
top_p = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.8, label="Top P")
|
17 |
+
top_k = gr.Slider(minimum=0, maximum=1000, step=1, value=100, label="Top K")
|
18 |
+
max_new_tokens = gr.Slider(minimum=1, maximum=4096, step=1, value=512, label="Max Tokens")
|
19 |
+
|
20 |
+
# Output for the interface
|
21 |
+
answer = gr.Textbox(label="Predicted answer", show_label=True, show_copy_button=True)
|
22 |
+
|
23 |
+
# Examples for the interface
|
24 |
+
examples = [
|
25 |
+
[
|
26 |
+
"images/cat.jpg",
|
27 |
+
"How many cats are there?",
|
28 |
+
0.7,
|
29 |
+
0.8,
|
30 |
+
100,
|
31 |
+
512,
|
32 |
+
],
|
33 |
+
[
|
34 |
+
"images/dog.jpg",
|
35 |
+
"ΒΏDe quΓ© color es el perro?",
|
36 |
+
0.7,
|
37 |
+
0.8,
|
38 |
+
100,
|
39 |
+
512,
|
40 |
+
],
|
41 |
+
[
|
42 |
+
"images/bird.jpg",
|
43 |
+
"Que fait l'oiseau ?",
|
44 |
+
0.7,
|
45 |
+
0.8,
|
46 |
+
100,
|
47 |
+
512,
|
48 |
+
],
|
49 |
+
]
|
50 |
+
|
51 |
+
# Title, description, and article for the interface
|
52 |
+
title = "Visual Question Answering"
|
53 |
+
description = "Gradio Demo for the MiniCPM-V 2.6 Vision Language Understanding and Generation model. This model can answer questions about images in natural language. To use it, upload your image, type a question, select associated parameters, use the default values, click 'Submit', or click one of the examples to load them. You can read more at the links below."
|
54 |
+
article = "<p style='text-align: center'><a href='https://github.com/OpenBMB/MiniCPM-V' target='_blank'>Model GitHub Repo</a> | <a href='https://huggingface.co/openbmb/MiniCPM-V-2_6' target='_blank'>Model Page</a></p>"
|
55 |
+
|
56 |
+
|
57 |
+
# Launch the interface
|
58 |
+
interface = gr.Interface(
|
59 |
+
fn=describe_image,
|
60 |
+
inputs=[image, question, temperature, top_p, top_k, max_new_tokens],
|
61 |
+
outputs=answer,
|
62 |
+
# examples=examples,
|
63 |
+
cache_examples=True,
|
64 |
+
cache_mode="lazy",
|
65 |
+
title=title,
|
66 |
+
description=description,
|
67 |
+
article=article,
|
68 |
+
theme="Glass",
|
69 |
+
flagging_mode="never",
|
70 |
+
)
|
71 |
+
interface.launch(debug=False)
|
images/bird.jpg
ADDED
![]() |
images/cat.jpg
ADDED
![]() |
images/dog.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python-dotenv==1.0.1
|
2 |
+
numpy==1.26.4
|
3 |
+
Pillow==10.1.0
|
4 |
+
torch==2.2.0
|
5 |
+
torchaudio==2.2.0
|
6 |
+
torchvision==0.17.0
|
7 |
+
transformers==4.44.2
|
8 |
+
sentencepiece==0.1.99
|
9 |
+
https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.2/flash_attn-2.6.2+cu123torch2.2cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|
10 |
+
decord
|
11 |
+
librosa==0.9.0
|
12 |
+
soundfile==0.12.1
|
13 |
+
vector-quantize-pytorch==1.18.5
|
14 |
+
vocos==0.1.0
|
15 |
+
moviepy
|
16 |
+
gradio
|
17 |
+
accelerate
|
src/__init__.py
ADDED
File without changes
|
src/app/__init__.py
ADDED
File without changes
|
src/app/model.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Necessary imports
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from typing import Any
|
6 |
+
import torch
|
7 |
+
from transformers import AutoModel, AutoTokenizer, AutoProcessor
|
8 |
+
|
9 |
+
# Local imports
|
10 |
+
from src.logger import logging
|
11 |
+
from src.exception import CustomExceptionHandling
|
12 |
+
|
13 |
+
|
14 |
+
# Load the Environment Variables from .env file
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
# Access token for using the model
|
18 |
+
access_token = os.environ.get("ACCESS_TOKEN")
|
19 |
+
|
20 |
+
|
21 |
+
def load_model_tokenizer_and_processor(model_name: str, device: str) -> Any:
|
22 |
+
"""
|
23 |
+
Load the model, tokenizer and processor.
|
24 |
+
|
25 |
+
Args:
|
26 |
+
- model_name (str): The name of the model to load.
|
27 |
+
- device (str): The device to load the model onto.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
- model: The loaded model.
|
31 |
+
- tokenizer: The loaded tokenizer.
|
32 |
+
- processor: The loaded processor.
|
33 |
+
"""
|
34 |
+
# try:
|
35 |
+
# Load the model, tokenizer and processor
|
36 |
+
model = AutoModel.from_pretrained(
|
37 |
+
model_name,
|
38 |
+
# device_map = 'auto',
|
39 |
+
trust_remote_code=True,
|
40 |
+
attn_implementation="sdpa",
|
41 |
+
torch_dtype=torch.bfloat16,
|
42 |
+
# init_vision=True,
|
43 |
+
# init_audio=False,
|
44 |
+
# init_tts=False,
|
45 |
+
# token=access_token
|
46 |
+
).to('cuda')
|
47 |
+
# model = model
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
49 |
+
model_name, trust_remote_code=True,
|
50 |
+
# token=access_token
|
51 |
+
)
|
52 |
+
processor = AutoProcessor.from_pretrained(
|
53 |
+
model_name, trust_remote_code=True,
|
54 |
+
# token=access_token
|
55 |
+
)
|
56 |
+
|
57 |
+
# Log the successful loading of the model, tokenizer and processor
|
58 |
+
logging.info("Model, tokenizer and processor loaded successfully.")
|
59 |
+
|
60 |
+
# Return the model, tokenizer and processor
|
61 |
+
return model, tokenizer, processor
|
62 |
+
|
63 |
+
# Handle exceptions that may occur during model, tokenizer and processor loading
|
64 |
+
# except Exception as e:
|
65 |
+
# Custom exception handling
|
66 |
+
# raise CustomExceptionHandling(e, sys) from e
|
src/app/response.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Necessary imports
|
2 |
+
import sys
|
3 |
+
import gradio as gr
|
4 |
+
import spaces
|
5 |
+
from decord import VideoReader, cpu
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# Local imports
|
9 |
+
from src.config import (
|
10 |
+
device,
|
11 |
+
model_name,
|
12 |
+
sampling,
|
13 |
+
stream,
|
14 |
+
repetition_penalty,
|
15 |
+
)
|
16 |
+
from src.app.model import load_model_tokenizer_and_processor
|
17 |
+
from src.logger import logging
|
18 |
+
from src.exception import CustomExceptionHandling
|
19 |
+
|
20 |
+
|
21 |
+
# Model, tokenizer and processor
|
22 |
+
# try :
|
23 |
+
model, tokenizer, processor = load_model_tokenizer_and_processor(model_name, device)
|
24 |
+
# except Exception as e:
|
25 |
+
# Custom exception handling
|
26 |
+
# raise CustomExceptionHandling(e, sys) from e
|
27 |
+
|
28 |
+
MAX_NUM_FRAMES=64
|
29 |
+
|
30 |
+
def encode_video(video_path):
|
31 |
+
def uniform_sample(l, n):
|
32 |
+
gap = len(l) / n
|
33 |
+
idxs = [int(i * gap + gap / 2) for i in range(n)]
|
34 |
+
return [l[i] for i in idxs]
|
35 |
+
|
36 |
+
vr = VideoReader(video_path, ctx=cpu(0))
|
37 |
+
sample_fps = round(vr.get_avg_fps() / 1) # FPS
|
38 |
+
frame_idx = [i for i in range(0, len(vr), sample_fps)]
|
39 |
+
if len(frame_idx) > MAX_NUM_FRAMES:
|
40 |
+
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
|
41 |
+
frames = vr.get_batch(frame_idx).asnumpy()
|
42 |
+
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
|
43 |
+
print('num frames:', len(frames))
|
44 |
+
return frames
|
45 |
+
|
46 |
+
@spaces.GPU()
|
47 |
+
def describe_image(
|
48 |
+
image: str,
|
49 |
+
question: str,
|
50 |
+
temperature: float,
|
51 |
+
top_p: float,
|
52 |
+
top_k: int,
|
53 |
+
max_new_tokens: int,
|
54 |
+
) -> str:
|
55 |
+
"""
|
56 |
+
Generates an answer to a given question based on the provided image and question.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
- image (str): The path to the image file.
|
60 |
+
- question (str): The question text.
|
61 |
+
- temperature (float): The temperature parameter for the model.
|
62 |
+
- top_p (float): The top_p parameter for the model.
|
63 |
+
- top_k (int): The top_k parameter for the model.
|
64 |
+
- max_new_tokens (int): The max tokens to be generated by the model.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
str: The generated answer to the question.
|
68 |
+
"""
|
69 |
+
try:
|
70 |
+
# Check if image or question is None
|
71 |
+
if not image or not question:
|
72 |
+
gr.Warning("Please provide an image and a question.")
|
73 |
+
frames = encode_video(image)
|
74 |
+
msgs = [
|
75 |
+
{'role': 'user', 'content': frames + [question]},
|
76 |
+
]
|
77 |
+
|
78 |
+
|
79 |
+
# Message format for the model
|
80 |
+
# msgs = [{"role": "user", "content": [image, question]}]
|
81 |
+
|
82 |
+
# Generate the answer
|
83 |
+
# answer = model.chat(
|
84 |
+
# image=None,
|
85 |
+
# msgs=msgs,
|
86 |
+
# tokenizer=tokenizer,
|
87 |
+
# processor=processor,
|
88 |
+
# sampling=sampling,
|
89 |
+
# stream=stream,
|
90 |
+
# top_p=top_p,
|
91 |
+
# top_k=top_k,
|
92 |
+
# temperature=temperature,
|
93 |
+
# repetition_penalty=repetition_penalty,
|
94 |
+
# max_new_tokens=max_new_tokens,
|
95 |
+
# )
|
96 |
+
answer = model.chat(
|
97 |
+
msgs=msgs,
|
98 |
+
tokenizer=tokenizer,
|
99 |
+
processor=processor,
|
100 |
+
sampling=sampling,
|
101 |
+
stream=stream,
|
102 |
+
top_p=top_p,
|
103 |
+
top_k=top_k,
|
104 |
+
temperature=temperature,
|
105 |
+
repetition_penalty=repetition_penalty,
|
106 |
+
max_new_tokens=max_new_tokens
|
107 |
+
)
|
108 |
+
|
109 |
+
# Log the successful generation of the answer
|
110 |
+
logging.info("Answer generated successfully.")
|
111 |
+
logging.info("".join(answer))
|
112 |
+
|
113 |
+
# Return the answer
|
114 |
+
return "".join(answer)
|
115 |
+
|
116 |
+
# Handle exceptions that may occur during answer generation
|
117 |
+
except Exception as e:
|
118 |
+
# Custom exception handling
|
119 |
+
raise CustomExceptionHandling(e, sys) from e
|
src/config.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model settings
|
2 |
+
device = "cuda"
|
3 |
+
model_name = "openbmb/MiniCPM-o-2_6"
|
4 |
+
|
5 |
+
# Decoding settings
|
6 |
+
sampling = True
|
7 |
+
stream = True
|
8 |
+
repetition_penalty = 1.05
|
src/exception.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module defines a custom exception handling class and a function to get error message with details of the error.
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Standard Library
|
6 |
+
import sys
|
7 |
+
|
8 |
+
# Local imports
|
9 |
+
from src.logger import logging
|
10 |
+
|
11 |
+
|
12 |
+
# Function Definition to get error message with details of the error (file name and line number) when an error occurs in the program
|
13 |
+
def get_error_message(error, error_detail: sys):
|
14 |
+
"""
|
15 |
+
Get error message with details of the error.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
- error (Exception): The error that occurred.
|
19 |
+
- error_detail (sys): The details of the error.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
str: A string containing the error message along with the file name and line number where the error occurred.
|
23 |
+
"""
|
24 |
+
_, _, exc_tb = error_detail.exc_info()
|
25 |
+
|
26 |
+
# Get error details
|
27 |
+
file_name = exc_tb.tb_frame.f_code.co_filename
|
28 |
+
return "Error occured in python script name [{0}] line number [{1}] error message[{2}]".format(
|
29 |
+
file_name, exc_tb.tb_lineno, str(error)
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
# Custom Exception Handling Class Definition
|
34 |
+
class CustomExceptionHandling(Exception):
|
35 |
+
"""
|
36 |
+
Custom Exception Handling:
|
37 |
+
This class defines a custom exception that can be raised when an error occurs in the program.
|
38 |
+
It takes an error message and an error detail as input and returns a formatted error message when the exception is raised.
|
39 |
+
"""
|
40 |
+
|
41 |
+
# Constructor
|
42 |
+
def __init__(self, error_message, error_detail: sys):
|
43 |
+
"""Initialize the exception"""
|
44 |
+
super().__init__(error_message)
|
45 |
+
|
46 |
+
self.error_message = get_error_message(error_message, error_detail=error_detail)
|
47 |
+
|
48 |
+
def __str__(self):
|
49 |
+
"""String representation of the exception"""
|
50 |
+
return self.error_message
|
src/logger.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Importing the required modules
|
2 |
+
import os
|
3 |
+
import logging
|
4 |
+
from datetime import datetime
|
5 |
+
|
6 |
+
# Creating a log file with the current date and time as the name of the file
|
7 |
+
LOG_FILE = f"{datetime.now().strftime('%m_%d_%Y_%H_%M_%S')}.log"
|
8 |
+
|
9 |
+
# Creating a logs folder if it does not exist
|
10 |
+
logs_path = os.path.join(os.getcwd(), "logs", LOG_FILE)
|
11 |
+
os.makedirs(logs_path, exist_ok=True)
|
12 |
+
|
13 |
+
# Setting the log file path and the log level
|
14 |
+
LOG_FILE_PATH = os.path.join(logs_path, LOG_FILE)
|
15 |
+
|
16 |
+
# Configuring the logger
|
17 |
+
logging.basicConfig(
|
18 |
+
filename=LOG_FILE_PATH,
|
19 |
+
format="[ %(asctime)s ] %(lineno)d %(name)s - %(levelname)s - %(message)s",
|
20 |
+
level=logging.INFO,
|
21 |
+
)
|