Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
# from omegaconf import OmegaConf
|
5 |
+
import shutil
|
6 |
+
import os
|
7 |
+
import wget
|
8 |
+
import time
|
9 |
+
variable = []
|
10 |
+
speech = ""
|
11 |
+
# context_2 = ""
|
12 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
13 |
+
import torch
|
14 |
+
from transformers import AutoTokenizer, AutoModel
|
15 |
+
import logging
|
16 |
+
import torch
|
17 |
+
import os
|
18 |
+
import base64
|
19 |
+
|
20 |
+
from pyannote.audio import Pipeline
|
21 |
+
from transformers import pipeline, AutoModelForCausalLM
|
22 |
+
from diarization_utils import diarize
|
23 |
+
from huggingface_hub import HfApi
|
24 |
+
from pydantic import ValidationError
|
25 |
+
from starlette.exceptions import HTTPException
|
26 |
+
|
27 |
+
# from config import model_settings, InferenceConfig
|
28 |
+
|
29 |
+
import logging
|
30 |
+
|
31 |
+
from pydantic import BaseModel
|
32 |
+
from pydantic_settings import BaseSettings
|
33 |
+
from typing import Optional, Literal
|
34 |
+
|
35 |
+
logger = logging.getLogger(__name__)
|
36 |
+
|
37 |
+
|
38 |
+
class ModelSettings(BaseSettings):
|
39 |
+
asr_model: str
|
40 |
+
assistant_model: Optional[str]
|
41 |
+
diarization_model: Optional[str]
|
42 |
+
hf_token: Optional[str]
|
43 |
+
|
44 |
+
|
45 |
+
class InferenceConfig(BaseModel):
|
46 |
+
task: Literal["transcribe", "translate"] = "transcribe"
|
47 |
+
batch_size: int = 24
|
48 |
+
assisted: bool = False
|
49 |
+
chunk_length_s: int = 30
|
50 |
+
sampling_rate: int = 16000
|
51 |
+
language: Optional[str] = None
|
52 |
+
num_speakers: Optional[int] = None
|
53 |
+
min_speakers: Optional[int] = None
|
54 |
+
max_speakers: Optional[int] = None
|
55 |
+
|
56 |
+
# from nemo.collections.asr.parts.utils.diarization_utils import OfflineDiarWithASR
|
57 |
+
# from nemo.collections.asr.parts.utils.decoder_timestamps_utils import ASRDecoderTimeStamps
|
58 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
59 |
+
# logger.info(f"Using device: {device.type}")
|
60 |
+
torch_dtype = torch.float32 if device.type == "cpu" else torch.float16
|
61 |
+
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True)
|
63 |
+
model = AutoModel.from_pretrained("THUDM/chatglm3-6b-32k", trust_remote_code=True,device_map='auto')
|
64 |
+
# base_model = "lyogavin/Anima-7B-100K"
|
65 |
+
# tokenizer = AutoTokenizer.from_pretrained(base_model)
|
66 |
+
# model = AutoModelForCausalLM.from_pretrained(
|
67 |
+
# base_model,
|
68 |
+
# bnb_4bit_compute_dtype=torch.float16,
|
69 |
+
# # torch_dtype=torch.float16,
|
70 |
+
# trust_remote_code=True,
|
71 |
+
# device_map="auto",
|
72 |
+
# load_in_4bit=True
|
73 |
+
# )
|
74 |
+
# model.eval()
|
75 |
+
|
76 |
+
assistant_model = AutoModelForCausalLM.from_pretrained(
|
77 |
+
"distil-whisper/distil-large-v3",
|
78 |
+
torch_dtype=torch_dtype,
|
79 |
+
low_cpu_mem_usage=True,
|
80 |
+
use_safetensors=True
|
81 |
+
)
|
82 |
+
|
83 |
+
assistant_model.to(device)
|
84 |
+
|
85 |
+
asr_pipeline = pipeline(
|
86 |
+
"automatic-speech-recognition",
|
87 |
+
model="openai/whisper-large-v3",
|
88 |
+
torch_dtype=torch_dtype,
|
89 |
+
device=device
|
90 |
+
)
|
91 |
+
|
92 |
+
|
93 |
+
HfApi().whoami(os.getenv('HF_TOKEN'))
|
94 |
+
diarization_pipeline = Pipeline.from_pretrained(
|
95 |
+
checkpoint_path="pyannote/speaker-diarization-3.1",
|
96 |
+
use_auth_token=os.getenv('HF_TOKEN'),
|
97 |
+
)
|
98 |
+
diarization_pipeline.to(device)
|
99 |
+
|
100 |
+
|
101 |
+
def upload_file(files):
|
102 |
+
file_paths = [file.name for file in files]
|
103 |
+
|
104 |
+
global variable
|
105 |
+
variable = file_paths
|
106 |
+
|
107 |
+
return file_paths
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
def audio_function():
|
113 |
+
# Call the function and return its result to be displayed
|
114 |
+
|
115 |
+
time_1 = time.time()
|
116 |
+
paths = variable
|
117 |
+
|
118 |
+
str1 = "processed speech"
|
119 |
+
for i in paths:
|
120 |
+
str1 = str1 + i
|
121 |
+
|
122 |
+
str1=str1.replace("processed speech","")
|
123 |
+
print("before processing ffmpeg ! ")
|
124 |
+
|
125 |
+
command_to_mp4_to_wav = "ffmpeg -i {} current_out.wav -y"
|
126 |
+
#-acodec pcm_s16le -ar 16000 -ac 1
|
127 |
+
os.system(command_to_mp4_to_wav.format(str1))
|
128 |
+
|
129 |
+
print("after ffmpeg")
|
130 |
+
|
131 |
+
# os.system("insanely-fast-whisper --file-name {}_new.wav --task transcribe --hf_token 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".format(str1.replace("mp3","")))
|
132 |
+
|
133 |
+
parameters = InferenceConfig()
|
134 |
+
|
135 |
+
|
136 |
+
generate_kwargs = {
|
137 |
+
"task": parameters.task,
|
138 |
+
"language": parameters.language,
|
139 |
+
"assistant_model": assistant_model if parameters.assisted else None
|
140 |
+
}
|
141 |
+
|
142 |
+
|
143 |
+
asr_outputs = asr_pipeline(
|
144 |
+
"current_out.wav",
|
145 |
+
chunk_length_s=parameters.chunk_length_s,
|
146 |
+
batch_size=parameters.batch_size,
|
147 |
+
generate_kwargs=generate_kwargs,
|
148 |
+
return_timestamps=True,
|
149 |
+
)
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
|
154 |
+
transcript = diarize(diarization_pipeline, "current_out.wav", parameters, asr_outputs)
|
155 |
+
return transcript,asr_outputs["chunks"],asr_outputs["text"]
|
156 |
+
return {
|
157 |
+
"speakers": transcript,
|
158 |
+
"chunks": asr_outputs["chunks"],
|
159 |
+
"text": asr_outputs["text"],
|
160 |
+
}
|
161 |
+
a=time.time()
|
162 |
+
DOMAIN_TYPE = "meeting" # Can be meeting or telephonic based on domain type of the audio file
|
163 |
+
CONFIG_FILE_NAME = f"diar_infer_{DOMAIN_TYPE}.yaml"
|
164 |
+
|
165 |
+
CONFIG_URL = f"https://raw.githubusercontent.com/NVIDIA/NeMo/main/examples/speaker_tasks/diarization/conf/inference/{CONFIG_FILE_NAME}"
|
166 |
+
|
167 |
+
|
168 |
+
CONFIG = wget.download(CONFIG_URL,"./")
|
169 |
+
cfg = OmegaConf.load(CONFIG)
|
170 |
+
# print(OmegaConf.to_yaml(cfg))
|
171 |
+
|
172 |
+
|
173 |
+
# Create a manifest file for input with below format.
|
174 |
+
# {"audio_filepath": "/path/to/audio_file", "offset": 0, "duration": null, "label": "infer", "text": "-",
|
175 |
+
# "num_speakers": null, "rttm_filepath": "/path/to/rttm/file", "uem_filepath"="/path/to/uem/filepath"}
|
176 |
+
import json
|
177 |
+
meta = {
|
178 |
+
'audio_filepath': "current_out.wav",
|
179 |
+
'offset': 0,
|
180 |
+
'duration':None,
|
181 |
+
'label': 'infer',
|
182 |
+
'text': '-',
|
183 |
+
'num_speakers': None,
|
184 |
+
'rttm_filepath': None,
|
185 |
+
'uem_filepath' : None
|
186 |
+
}
|
187 |
+
with open(os.path.join('input_manifest.json'),'w') as fp:
|
188 |
+
json.dump(meta,fp)
|
189 |
+
fp.write('\n')
|
190 |
+
|
191 |
+
cfg.diarizer.manifest_filepath = 'input_manifest.json'
|
192 |
+
cfg.diarizer.out_dir = "./" # Directory to store intermediate files and prediction outputs
|
193 |
+
pretrained_speaker_model = 'titanet_large'
|
194 |
+
cfg.diarizer.speaker_embeddings.model_path = pretrained_speaker_model
|
195 |
+
cfg.diarizer.speaker_embeddings.parameters.window_length_in_sec = [1.5,1.25,1.0,0.75,0.5]
|
196 |
+
cfg.diarizer.speaker_embeddings.parameters.shift_length_in_sec = [0.75,0.625,0.5,0.375,0.1]
|
197 |
+
cfg.diarizer.speaker_embeddings.parameters.multiscale_weights= [1,1,1,1,1]
|
198 |
+
cfg.diarizer.oracle_vad = True # ----> ORACLE VAD
|
199 |
+
cfg.diarizer.clustering.parameters.oracle_num_speakers = False
|
200 |
+
# cfg.diarizer.manifest_filepath = 'input_manifest.json'
|
201 |
+
# # !cat {cfg.diarizer.manifest_filepath}
|
202 |
+
# pretrained_speaker_model='titanet_large'
|
203 |
+
# cfg.diarizer.manifest_filepath = cfg.diarizer.manifest_filepath
|
204 |
+
# cfg.diarizer.out_dir = "./" #Directory to store intermediate files and prediction outputs
|
205 |
+
# cfg.diarizer.speaker_embeddings.model_path = pretrained_speaker_model
|
206 |
+
# cfg.diarizer.clustering.parameters.oracle_num_speakers=False
|
207 |
+
|
208 |
+
# Using Neural VAD and Conformer ASR
|
209 |
+
cfg.diarizer.vad.model_path = 'vad_multilingual_marblenet'
|
210 |
+
cfg.diarizer.asr.model_path = 'stt_en_conformer_ctc_large'
|
211 |
+
cfg.diarizer.oracle_vad = False # ----> Not using oracle VAD
|
212 |
+
cfg.diarizer.asr.parameters.asr_based_vad = False
|
213 |
+
|
214 |
+
|
215 |
+
asr_decoder_ts = ASRDecoderTimeStamps(cfg.diarizer)
|
216 |
+
asr_model = asr_decoder_ts.set_asr_model()
|
217 |
+
print(asr_model)
|
218 |
+
word_hyp, word_ts_hyp = asr_decoder_ts.run_ASR(asr_model)
|
219 |
+
|
220 |
+
print("Decoded word output dictionary: \n", word_hyp)
|
221 |
+
print("Word-level timestamps dictionary: \n", word_ts_hyp)
|
222 |
+
|
223 |
+
|
224 |
+
asr_diar_offline = OfflineDiarWithASR(cfg.diarizer)
|
225 |
+
asr_diar_offline.word_ts_anchor_offset = asr_decoder_ts.word_ts_anchor_offset
|
226 |
+
|
227 |
+
diar_hyp, diar_score = asr_diar_offline.run_diarization(cfg, word_ts_hyp)
|
228 |
+
print("Diarization hypothesis output: \n", diar_hyp)
|
229 |
+
trans_info_dict = asr_diar_offline.get_transcript_with_speaker_labels(diar_hyp, word_hyp, word_ts_hyp)
|
230 |
+
# print(trans_info_dict)
|
231 |
+
|
232 |
+
# with open(os.path.join('output_diarization.json'),'w') as fp1:
|
233 |
+
# json.dump(trans_info_dict,fp1)
|
234 |
+
# fp1.write('\n')
|
235 |
+
# b = time.time()
|
236 |
+
# print(b-a,"seconds diartization time for 50 min audio")
|
237 |
+
|
238 |
+
|
239 |
+
import json
|
240 |
+
context = ""
|
241 |
+
context_2 = ""
|
242 |
+
# global context_2
|
243 |
+
# with open("output.json","r") as fli:
|
244 |
+
# json_dict = json.load(fli)
|
245 |
+
# for lst in sorted(json_dict["speakers"], key=lambda x: x['timestamp'][0], reverse=False):
|
246 |
+
# context = context + str(lst["timestamp"][0])+" : "+str(lst["timestamp"][1]) + " = " + lst["text"]+"\n"
|
247 |
+
# context = context + str(lst["timestamp"][0])+" : "+str(lst["timestamp"][1]) + " = " + lst["speaker"]+" ; "+ lst["text"]+"\n"
|
248 |
+
for dct in trans_info_dict["current_out"]["sentences"]:
|
249 |
+
# context = context + "start_time : {} ".format(dct["start_time"]) + "end_time : {} ".format(dct["end_time"])+ "speaker : {} ".format(dct["speaker"]) + "\n"
|
250 |
+
context = context + str(dct["start_time"])+" : "+str(dct["end_time"]) + " = " + dct["speaker"]+" ; "+ dct["text"]+"\n"
|
251 |
+
context_2 = context_2 + str(dct["start_time"])+" : "+str(dct["end_time"]) + " = "+ dct["text"]+"\n"
|
252 |
+
global speech
|
253 |
+
speech = trans_info_dict["current_out"]["transcription"]
|
254 |
+
|
255 |
+
time_2 = time.time()
|
256 |
+
|
257 |
+
return context,context_2,str(int(time_2-time_1)) + " seconds"
|
258 |
+
|
259 |
+
def audio_function2():
|
260 |
+
# Call the function and return its result to be displayed
|
261 |
+
|
262 |
+
# global speech
|
263 |
+
str2 = speech
|
264 |
+
time_3 = time.time()
|
265 |
+
|
266 |
+
|
267 |
+
# prompt = " {} generate medical subjective objective assessment plan (soap) notes ?".format(str2)
|
268 |
+
prompt = " {} summary of sales call ? is the agent qualified the lead properly ?".format(str2)
|
269 |
+
|
270 |
+
# model = model.eval()
|
271 |
+
response, history = model.chat(tokenizer, prompt, history=[])
|
272 |
+
print(response)
|
273 |
+
# del model
|
274 |
+
# del tokenizer
|
275 |
+
# torch.cuda.empty_cache()
|
276 |
+
time_4 = time.time()
|
277 |
+
# response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)
|
278 |
+
# print(response)
|
279 |
+
|
280 |
+
# inputs = tokenizer(prompt, return_tensors="pt")
|
281 |
+
|
282 |
+
# inputs['input_ids'] = inputs['input_ids'].cuda()
|
283 |
+
# inputs['attention_mask'] = inputs['attention_mask'].cuda()
|
284 |
+
|
285 |
+
|
286 |
+
# generate_ids = model.generate(**inputs, max_new_tokens=4096,
|
287 |
+
# only_last_logit=True, # to save memory
|
288 |
+
# use_cache=False, # when run into OOM, enable this can save memory
|
289 |
+
# xentropy=True)
|
290 |
+
# output = tokenizer.batch_decode(generate_ids,
|
291 |
+
# skip_special_tokens=True,
|
292 |
+
# clean_up_tokenization_spaces=False)
|
293 |
+
|
294 |
+
# tokenizer = AutoTokenizer.from_pretrained("togethercomputer/LLaMA-2-7B-32K")
|
295 |
+
# model = AutoModelForCausalLM.from_pretrained("togethercomputer/LLaMA-2-7B-32K", trust_remote_code=True, torch_dtype=torch.float16,device_map="auto",bnb_4bit_compute_dtype=torch.float16,load_in_4bit=True)
|
296 |
+
|
297 |
+
|
298 |
+
# input_context = "summarize "+" the following {}".format(str2)
|
299 |
+
# input_ids = tokenizer.encode(input_context, return_tensors="pt").cuda()
|
300 |
+
# output = model.generate(input_ids, max_new_tokens=512, temperature=0.7)
|
301 |
+
# output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
302 |
+
# print(output_text,"wow what happened ")
|
303 |
+
# return output
|
304 |
+
return response,str(int(time_4-time_3)) + " seconds"
|
305 |
+
|
306 |
+
|
307 |
+
with gr.Blocks() as demo:
|
308 |
+
file_output = gr.File()
|
309 |
+
upload_button = gr.UploadButton("Click to Upload a File", file_types=["audio","video"], file_count="multiple")
|
310 |
+
upload_button.upload(upload_file, upload_button, file_output)
|
311 |
+
gr.Markdown("## Click process audio to display text from audio file")
|
312 |
+
submit_button = gr.Button("Process Audio")
|
313 |
+
output_text = gr.Textbox(label="Speech Diarization")
|
314 |
+
output_text_2 = gr.Textbox(label="Speech chunks")
|
315 |
+
submit_button.click(audio_function, outputs=[output_text,output_text_2,gr.Textbox(label=" asr_text :")])
|
316 |
+
gr.Markdown("## Click the Summarize to display call summary")
|
317 |
+
submit_button = gr.Button("Summarize")
|
318 |
+
output_text = gr.Textbox(label="SOAP Notes")
|
319 |
+
submit_button.click(audio_function2, outputs=[output_text,gr.Textbox(label="Time Taken :")])
|
320 |
+
|
321 |
+
demo.launch(server_name="0.0.0.0",auth = ('manish', 'openrainbow'),auth_message = "Enter your credentials")
|